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Abstract—The design of cooperative adaptive cruise control is
critical in mixed traffic flow, where connected and automated
vehicles (CAVs) and human-driven vehicles (HDVs) coexist.
Compared with pure CAVs, the major challenge is how to
handle the prediction uncertainty of HDVs, which can cause
significant state deviation of CAVs from planned trajectories. In
most existing studies, model predictive control (MPC) is utilized
to replan CAVs’ trajectories to mitigate the deviation at each time
step. However, as the replanning process is usually conducted
by solving an optimization problem with information through
inter-vehicular communication, MPC methods suffer from heavy
computational and communicational burdens. To address this
limitation, a robust platoon control framework is proposed based
on tube MPC in this paper. The prediction uncertainty is dynam-
ically mitigated by the feedback control and restricted inside a
set with a high probability. When the uncertainty exceeds the
set or additional external disturbance emerges, the feedforward
control is triggered to plan a “tube” (a sequence of sets), which
can bound CAVs’ actual trajectories. As the replanning process
is usually not required, the proposed method is much more
efficient regarding computation and communication, compared
with the MPC method. Comprehensive simulations are provided
to validate the effectiveness of the proposed framework.

Index Terms—Mixed Traffic Flow, Cooperative Adaptive
Cruise Control, Tube Model Predictive Control.

I. INTRODUCTION

COOPERATIVE Adaptive Cruise Control (CACC) is one
of the promising intelligent transportation technologies

that contribute to improving traffic flow stability, throughput,
and safety [1–8]. In the traffic environment, heterogeneous
external disturbances usually exist, such as speed guidance
from intersection control [9–11] and maneuvers of neighbor-
hood vehicles (e.g., cut-in, cut-out, and merge), which force
vehicles to adjust their speed trajectories. Through vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) wireless
communication, CACC can utilize more information to better
respond to these external disturbances.
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Most existing CACC studies focus on pure connected and
automated vehicle (CAV) flow [12]. Given that CAVs and
human-driven vehicles (HDVs) will coexist in the future traffic
flow for a long period, however, it is critical to design CACC
in the mixed traffic flow [13–21]. To address this issue, several
CACC methods in mixed traffic flow have recently been pro-
posed. The basic idea behind these methods is to plan CAVs’
trajectories based on the prediction of HDVs. For example,
Wang [22] proposed an adaptive driving strategy to adjust the
control parameters (e.g., desired time gap and feedback gap)
of CAVs to address the disturbance, assuming that a roadside
system with V2I communications can estimate parameters
of HDVs. Although simulation performance also looks well
when the parameter estimation is imperfect, how to handle
the prediction uncertainty caused by the estimation errors is
not discussed explicitly. Ge et al. [23–25] designed feedback
controllers of CAVs under the environment of connected cruise
control (CCC), where CAVs can receive position and velocity
information from HDVs. Li et al. [26] assumed that the transfer
function of HDVs is known as a prior so the behaviors of
HDVs can be exactly predicted.

Although various methods can be used for the prediction,
such as model-based methods [24, 27–29] and model-free
methods [30–33], HDVs usually do not follow deterministic
behavioral models and therefore cannot be exactly predicted.
The major challenge of CACC in mixed traffic flow is how
to handle the prediction uncertainty of HDVs. Although the
uncertainty is usually assumed bounded during one time step,
it can accumulate with the increase of the prediction time
horizon. If CAVs are controlled without adjustment for the
accumulated uncertainty, it can cause significant deviation
of CAV states (e.g., relative distance and speed) from their
planned state trajectories, and therefore violate system con-
straints such as safety, stability, and string stability [34–36].

In most existing studies, model predictive control (MPC) is
utilized to replan CAVs’ trajectories at each time step (e.g.,
0.1 second) [26, 29, 37, 38]. For example, Gong and Du
[29] proposed a P-step MPC method to control CAVs, where
an online curve matching algorithm is integrated to predict
the behaviors of HDVs. By conducting the MPC method
at each control time step, the prediction error is handled
implicitly. As the prediction uncertainty is assumed bounded
for one time step, MPC methods can implicitly restrict the
state deviation of CAVs within a reasonable bound. However,
as the replanning process is usually conducted by solving an
optimization problem with information through inter-vehicular
communication, MPC methods suffer from heavy compu-
tational and communicational burdens. The communication
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burden will further damage the CACC performance when time
delay and packet loss exist [39, 40].

To address this limitation, this paper proposes a robust
platoon control framework based on tube MPC [41–43]. To
the best of our knowledge, it is the first time that the tube
MPC method is utilized for the platoon control in mixed traffic
flow. At each time step, the feedback control is utilized to
mitigate the deviation of CAV states caused by the uncertainty
of HDVs. As no communication is required by the feedback
control and its computational cost is negligible, it can utilize a
much smaller time step than MPC. Assuming the uncertainty
is bounded for one time step as most existing studies do, the
state tracking error is proved bounded inside the set (minimal
robust positively invariant (mRPI) set) by the feedback control.
When external disturbance emerges, instead of optimizing a
sequence of CAV states as MPC does, a sequence of mRPI
sets (i.e., a tube) is determined by solving an optimization
problem. The actual state trajectories, which are combined
with planned state trajectories and state deviation, are proved
bounded by the tube regardless of the actual uncertainty.
Therefore, no replan process is required unless additional
external disturbance emerges, which significantly reduces the
burdens of computation and inter-vehicular communication
compared with MPC methods. Since the tube is determined to
satisfy all constraints, safety, stability, and string stability are
guaranteed if the controller is feasible.

To reduce the method conservativeness and improve the
method feasibility, the probabilistic uncertainty bound of
HDVs is proposed, and the probabilistic mRPI set is calculated
correspondingly. To handle the probabilistic uncertainty bound
as well as multiple external disturbances, the event-triggered
mechanism is designed for the feedforward control. Conse-
quently, the proposed framework can restrict the uncertainty
by the feedback control inside the mRPI set for most of the
time (with a probability), and, for the other time when the
designed event happens, the feedforward control is triggered.
The higher the probability that the uncertainty is inside the
bound, the less the feedforward control is triggered, while the
higher conservativeness the method could be. Therefore, the
framework has the flexibility to balance between the feedback
control and feedforward control.

Specifically, the feedback control is designed by the dis-
crete linear quadratic regulator method [44], and the mRPI
set is determined by the ε-approximation method [45]. The
feasible set is determined by all constraints, and a tight set
is obtained by shrinking the feasible set subtracting the mRPI
set. Then, the planning process (i.e., feedforward control) is
designed to satisfy the tight set. Simulations are designed
to further validate the performance. Results show that the
proposed method can guarantee safety, stability, and string
stability, and is much more efficient regarding computation
and communication, compared with the MPC method.

In summary, the major contribution of this paper is to
propose a new framework for cooperative platoon control in
mixed traffic flow based on tube MPC methods, where the pre-
diction uncertainty of HDVs is handled explicitly. Compared
with state-of-the-art methods based on MPC [26, 29], our
framework has the following advantages. First, our framework

can explicitly handle the prediction uncertainty of human
drivers and thus enhance the MPC from an optimization
method to a robust optimization method. The robustness can
guarantee system constraints such as safety and stability for
every external disturbance. Second, our framework is flexible
to balance the feedforward control and feedback control. It can
gracefully degrade as the pure feedback control if no trajectory
plan is available, whereas degrade as the pure feedforward con-
trol if the feedback control is too conservative to be feasible.
Third, our framework can reduce the trigger frequency of the
feedforward control, and thus significantly reduce the burdens
of computation and intravehicular wireless communication. It
provides huge potentials for designing more effective V2V
communication systems and computational resource allocation
systems [46–48].

The rest of this paper is organized as follows. The problem
is formulated in Section II. In Section III, the framework of
the tube model predictive control is proposed for one external
disturbance. The robust platoon control framework is proposed
in Section IV including the probabilistic uncertainty bound and
the event-triggered mechanism. Performances of the proposed
framework are analyzed in Section V. In Section VI, numerical
experiments are conducted to validate the effectiveness of the
proposed framework. Finally, the paper is concluded in Section
VII.

II. PROBLEM FORMULATION

A. Notations

The field of a real number is denoted by R, whereas N =
{1, 2, . . . }. For a vector x ∈ Rn, its p-norm is given as

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

, p ∈ [1,∞)

‖x‖∞ = max
i
|xi| .

Given a Lebesgue measurable signal x : I → Rn, ‖x‖ILp

denotes its Lp norm defined as

‖x‖ILp
=

(∫
I

‖x(t)‖pp dt
)1/p

<∞, p ∈ [1,∞)

‖x‖IL∞
= sup

t∈I
‖x‖∞ ,

where the shorthand notation ‖x‖L∞
= ‖x‖[0,∞)

L∞
is used

when I = [0,∞) [49]. A continuous function α : [0, a) →
[0,∞), a ∈ R+ is said to be of class K if it is strictly increas-
ing and α(0) = 0. We say x ∈ L∞ if ‖x‖L∞

<∞. We recall
Minkowski sum for sets A,B is A⊕B = {x+y|x ∈ A, y ∈ B}
and the Pontryagin difference is A	B = {x|x+y ∈ A, y ∈ B}.

B. Scenario Description

As shown in Fig. 1, a sample scenario of mixed traffic flow
is studied in this paper, similar to existing studies [5, 29].
The scenario includes a predecessor CAV (p-CAV), multiple
HDVs, and the following CAV (f -CAV). Intervehicular com-
munication exists from p-CAV to f -CAV. f -CAV can measure
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the distance and speed of its predecessor neighbor HDV (n-
HDV) by on-board sensors (e.g., millimeter-wave radars). The
situation before p-CAV is not specified. There can exist more
HDVs before p-CAV, so the scenario is a sample of long mixed
traffic flow. Without loss of generality, p-CAV is assumed as
the leading vehicle of a platoon.

1. Historical trajectories and input; 

2. Planned trajectories and input.

…… ……

Human Drive 

Vehicles

External 

Disturbances

Following 

CAV (f-CAV)
Predecessor 

CAV (p-CAV)

1-HDVn-HDV

Fig. 1. Illustration of platoon in mixed traffic flow.

When external disturbances emerge, such as speed guidance
from intersection control and maneuvers of neighborhood
vehicles (e.g., cut-in, cut-out, and merge), CAVs are forced
to adjust their trajectories. The trajectory of p-CAV can be
planned by various methods (e.g., one-step MPC) to eliminate
the external disturbances. With the information of historical
and planned trajectories of p-CAV, how to control f -CAV
efficiently and robustly remains a huge challenge, which is
the focus of this paper.

C. CAV Modeling

The discrete vehicle dynamic of CAVs can be constructed by
the continuous-time dynamics with Zero Order Hold method
[50] and linearization techniques [51]. In this paper, the
second-order linear model is applied, which has been widely
used before [4, 34, 52, 53]. Denote s, v, u as the position,
speed, and acceleration. With a sampling time interval of τ ,
the discrete dynamic is obtained as

xi(k + 1) = Axi(k) +Bui(k), i ∈ {p, f} (1)

where xp and xf denote the states of p-CAV and f -CAV
respectively, and

xi =

[
si
vi

]
, A =

[
1 τ
0 1

]
, B =

[
0.5τ2

τ

]
.

If the planned state and acceleration are denoted as x̄ and ū,
the dynamic can be denoted as

x̄i(k + 1) = Ax̄i(k) +Būi(k), i ∈ {p, f}. (2)

Subtracting Eq. (1) by Eq. (2), dynamic of the state deviation
can be denoted as

x̃i(k + 1) = Ax̃i(k) +Bũi(k), i ∈ {p, f},

where

x̃i(k) = xi(k)− x̄i(k),

ũi(k) = ui(k)− ūi(k).

The tracking error of f -CAV is defined as

e = [es, ev]
T , (3)

where es denotes the position tracking error and ev denotes
the speed tracking error. In this paper, constant time headway
range policy [54, 55] is applied, so the tracking error is further
defined as

es(k) = sn(k)− sf (k)− h · vf (k),

ev(k) = vn(k)− vf (k),

where k denotes the discrete-time step, sn and sf denote the
position of the n-HDV and f -CAV respectively, vn and vf
denote their speeds, and h denotes the constant time headway.
To make the paper concise, the tracking errors are represented
compactly as

e(k) = xn(k) + Cxf (k), (4)

where

C =

[
−1 −h
0 −1

]
.

D. HDV Prediction

Behaviors of HDVs are usually predicted for optimizing
state trajectories of CAVs. Let x̄n(k) denote the predicted state
of n-HDV at time step k, then the predicted tracking error of
f -CAV, denoted as ē(k), can be calculated by

ē(k) = x̄n(k) + Cx̄f (k). (5)

Although various methods can be used for the prediction,
HDVs usually do not follow deterministic behavioral models,
and therefore prediction uncertainty exists. Let x̃n(k) denote
the prediction uncertainty as

x̃n(k) = xn(k)− x̄n(k).

Then the actual tracking error is influenced as

e(k) = xn(k) + Cxf (k),

= x̄n(k) + Cx̄f (k) + x̃n(k) + Cx̃f (k),

= ē(k) + ẽ(k),

(6)

where ẽ = x̃n + Cx̃f denotes the deviation of the tracking
error from its planned value.

E. Control Objectives

In this paper, the objectives of CACC include safety, stabil-
ity, and string stability, which are elaborated in this subsection.

For a pure CAV flow, one control objective is to ensure all
vehicles in the same group to move at a constant speed, while
maintaining the desired spaces between adjacent vehicles, i.e.,
keep the tracking error as zero [56]. To this end, two types of
stability have been proposed, i.e., individual stability and string
stability. Stability describes vehicles converging to given tra-
jectories, while string stability describes that the disturbances
are not amplified along the string of vehicles, which is critical
for traffic flow stability [36, 57, 58]. Definitions and analysis
methods of string stability can be found in review studies
[34, 35].

Different from pure CAV flow, not all vehicles can be
controlled in mixed traffic flow, so the definitions should be
modified correspondingly as follows:
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Definition 1. (Individual Stability): A mixed platoon is said
to be individual stable if

v̇n(t) = 0, ∀t ≥ 0⇒ lim
t→∞

e(t) = 0,

where vn denotes the speed of n-HDV.

Definition 2. (Lp String Stability): A mixed platoon is said
to be Lp string stable if there exist class K function α and
constant c > 0, such that, for any initial external disturbance
of the p-CAV satisfying

|es,p(0)| < c,

the solution es(t) exists for all t > 0 and satisfies

e ∈ D =
{
e ∈ R2 : ‖es(t)‖Lp

≤ α (|es,p(0)|)
}
, (7)

where es,p(0) = xp(0) − x̄p(0) denotes the initial position
disturbance of the p-CAV.

To better understand the definitions, we further explain their
properties. Definition 1 requires that tracking errors of CAVs
should converge to zero if HDVs keep the speed constant. This
property guarantees that the controlled CAVs can converge
to the given trajectory if there is no external disturbance.
Definition 2 requires that tracking errors of CAVs are bounded
if the initial external disturbance is bounded. In existing
studies, L2 and L∞ norms are usually utilized, which refer
to the energy and maximal amplitude respectively [34].

Besides stability and string stability, safety is another crit-
ical control objective. Moreover, the speed and acceleration
should be constrained. Therefore, constraints of f -CAV are
summarized as

e ∈ E = {e ∈ R2 : e ∈ D,−dmin ≤ es,
vn − vmax ≤ ev ≤ vn − vmin},

uf ∈ U = {uf ∈ R : −umax ≤ uf ≤ umax},
(8)

where e ∈ D is the requirement of string stability (see Eq. (7)),
−dmin represents the minimal distance for safety requirement,
vmin and vmax denote the minimum and maximum speeds
respectively, and umax denotes the maximum acceleration.

F. Challenge Brought by Prediction Uncertainty
In most existing studies, the prediction uncertainty for

one time step is assumed bounded explicitly or implicitly.
Adopting this assumption, the dynamic of ẽ is derived as

ẽ(k + 1) = x̃n(k + 1) + Cx̃f (k + 1),

= Ax̃n(k) + ∆x̃n(k) + C(Ax̃f (k) +Bũf (k)),

= Aẽ(k) + CBũf (k) + ∆x̃n(k),

(9)

where ∆x̃n(k) denotes the prediction uncertainty during the
time step (kτ, (k + 1)τ ], and it is assumed bounded as

∆x̃n(k) ∈W =
{
R2 : ‖∆x̃n(k)‖∞ ≤ cω

}
. (10)

Indicated by Eq. (9), if f -CAV is controlled only by its
planned acceleration, i.e., ũf (k) = 0, the deviation of the
tracking error ẽ will accumulate with the time horizon. As
a result, the tracking error will also accumulate as shown in
Eq. (6), violating the constraints as shown in Eq. (8). The
robust platoon control is proposed in this paper to address
this challenge.

III. TUBE MODEL PREDICTIVE CONTROL

In this section, the control framework is proposed for one
external disturbance based on tube MPC [41–43] including
feedback control and feedforward control. As illustrated in
Fig. 2, the feedforward control determines a sequence of sets
(a tube), while the feedback control dynamically mitigates the
deviation (ẽ) to restrict the actual tracking error (e = ē + ẽ)
inside the tube. Because the tube belongs to the feasible set,
all constraints are satisfied by the actual tracking error. The
actual acceleration of f -CAV is determined by uf = ūf + ũf ,
where ūf is planned by the feedforward control, and ũf is
determined by the feedback control at each time step. Different
from MPC, which replans at each time step, the feedforward
control in the proposed method plans ūf at the first step when
external disturbances emerge, and no replan is required until
the next external disturbance.

Fig. 2. Illustration of the tube method.

Specifically, the initial tracking error is caused by the exter-
nal disturbance, and the terminal tracking error is zero accord-
ing to the stability objective. The feedback control is designed
by the discrete linear quadratic regulator in Subsection III-A.
The feasible set is determined by all constraints as shown
in Eq. (8). To reduce the conservativeness of the tube, the
minimal robust positively invariant (mRPI) set is defined and
estimated by ε-approximation method in Subsection III-B. The
planned trajectory of the set (ē) is determined by solving an
optimization problem with a tight feasible set (i.e., feedforward
control) in Subsection III-C.

A. Feedback Control Design
At each time step, the feedback control mitigates the devi-

ation, ẽ(k), by determining ũf (k) as

ũf (k) = Kẽ(k), (11)

where K denotes the feedback gain. Substituting Eq. (11) into
Eq. (9), the dynamic is derived as

ẽ(k + 1) = AK ẽ(k) + ∆x̃n(k), (12)

where AK = A+ CBK.
To determine the feedback gain K, the discrete linear

quadratic regulator problem is formulated and solved as [44]:

min
K

J =
∞∑
k=0

{
‖Qẽs(k)‖22 + ‖Lẽv(k)‖22 + ‖Rũf (k)‖22

}
, (13)

with the constraint of Eq. (12), where the weighting matrices,
i.e., Q,L, and R, are symmetric and positive definite.
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B. Minimal Robust Positively Invariant Set

It can be proved that the feedback control in Eq. (11) can
bound the deviation ẽ in Eq. (12) into a set, denoted as robust
positively invariant (RPI) set, which was defined as [59]:

Definition 3. (RPI set): The set Z ⊂ R2 is a robust positively
invariant (RPI) set of the system (12) if AK ẽ+ ∆x̃n ∈ Z for
all ẽ ∈ Z and all ∆x̃n ∈W, i.e., if and only if AKZ⊕W ⊂ Z.

As shown in Fig. 2, the size of the tube is determined by the
set. To reduce the conservativeness of the tube, the minimal
RPI set is defined as [59]:

Definition 4. (Minimal RPI set): The mRPI set Z of the
system (12) is the RPI set in R2 that is contained in every
closed RPI set of the system (12).

To determine the mRPI set, it can be equivalently defined
as Z = lims→∞ Fs, where

Fs =
s−1⊕
i=0

AiKW, F0 = {0}. (14)

Although it is generally impossible to obtain an explicit
characterization of Z using Eq. (14) [60], an estimation of Z
can be obtained. In this paper, the ε-approximation method is
applied to estimate an outer convex set of the mRPI set, i.e.,
F ⊃ Z. By decreasing the difference between F and Z, the
outer convex set can well estimate the mRPI set. The details
of the ε-approximation method can be found in [45].

C. Feedforward Control Design

The goal of the feedforward control is to determine a tube
satisfying all constraints as shown in Eq. (8) as

e ∈ E, uf ∈ U.

It is essential to determine the planned trajectory, ē, satisfying
the tight constraints as

E = E	 F,U = U	KF.

To determine the trajectory of ē, the optimization problem
is formulated as

min
ūf (1),··· ,ūf (Np)

J =

Np∑
k=1

{
‖Gē(k)‖22 + ‖Fūf (k)‖22

}
, (15)

subject to constraints and dynamic of ē in Eq. (5) as

ē(k) ∈ E ∩ Et,
ūf (k) ∈ U ∩ Ut,
ē(k) = x̄n(k) + Cx̄f (k).

(16)

where k = 1, · · · , Np, G and F are symmetric and positive
define weighting matrices, and Et,Ut are terminal constraints
for the stability objective as

ē ∈ Et = {ē ∈ R2 : ē(Np) = 0},
ūf ∈ Ut = {ūf ∈ R : ūf (Np) = 0}.

(17)

Note x̄n denotes the prediction of n-HDV which relies on the
transmitted information from the p-CAV.

The optimization problem of Eq. (15-17) is convex because
J is a convex function, F is a convex approximation of the
mRPI set, and all sets of constraints are convex sets as the
Minkowski sum and Pontryagin difference keep the convexity.
Therefore, the optimization problem can be readily solved by
numerous convex optimization algorithms, for example, we
used CVX [61], a package for specifying and solving convex
programs, in the case study. Np denotes the predictive steps
and should be selected properly as the balance of problem fea-
sibility and computational complexity. A larger Np indicates
more steps that can be used to eliminate the initial error and
thus makes the problem in Eq. (15-17) easier to be solved
(higher feasibility). As more steps require to be predicted,
however, a larger Np also has a heavier computational burden.
In this paper, similar to most MPC methods, a moderate Np
is pre-determined by experience (e.g., 50).

D. Algorithm and Limitation

The control framework for one external disturbance can be
summarized in Algorithm 1. The feedback gain, uncertainty
bound, mRPI set, and tight sets are pre-determined, so the
computational complexity is negligible. Without external dis-
turbances or no trajectory plan is available (k > Np), the
controller gracefully degrades as the pure feedback control,
resulting in a car-following behavior.

Algorithm 1: Algorithm for one external disturbance
Compute the feedback gain K by solving the problem

in Eq. (13) as in [44];
Determine the uncertainty bound W;
Compute the mRPI set F as in [45] and the tight sets
E,U by Eq. (15);

if The external disturbance emerges then
Compute the feedforward control ūf , ē by solving
the optimization problem in Eq. (15-17);

for k = 1 to Np do
Observe the actual tracking error e(k);
Compute the deviation ẽ(k) = e(k)− ē(k);
Compute the feedback control
ũf (k) = K · ẽ(k);

Compute the actual acceleration
uf (k) = ūf (k) + ũf (k);

Implement the actual acceleration uf (k);
end
Observe the actual tracking error e(k);
Compute the feedback control ũf (k) = K · e(k);
Implement the feedback acceleration ũf (k).

end

One major limitation is the potential conservativeness of the
uncertainty bound W. In Algorithm 1, the prediction uncer-
tainty of HDVs for one time step is assumed bounded as in
Eq. (10). The assumption is mild as the time interval is usually
small. In practice, however, the calculation of the uncertainty
bound could be intractable, because it is influenced by types of
drivers, and even the same driver can have extreme behaviors.
If considering all these possible situations, the bound W could
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be so conservative that the optimization problem in Eq. (15-17)
is infeasible. We will solve the limitation in the next section.

IV. ROBUST PLATOON CONTROL

In this section, the framework of robust platoon control
is proposed for multiple external disturbances based on the
tube MPC. In Subsection IV-A, the probabilistic uncertainty
bound is proposed to solve the conservativeness limitation as
discussed above. Consequently, the controller can gracefully
degrade as the pure feedforward control if otherwise, the prob-
lem is infeasible. Moreover, the event-triggered mechanism is
designed for the feedforward control to handle the probabilis-
tic uncertainty bound and multiple external disturbances in
Subsection IV-B. Finally, the overall algorithm is summarized
in Subsection IV-C.

A. Probabilistic Uncertainty Bound

To reduce the conservativeness limitation caused by the
uncertainty bound W, the probabilistic uncertainty bound is
proposed Wθ as

P (∆x̃n ∈Wθ) = θ, (18)

which indicates that the prediction uncertainty is bounded
most of the time (with a probability θ). The introduction of
Wθ provides the flexibility to balance between robustness and
conservativeness. In practice, the initial values of θ and Wθ

can be determined by analyzing the historical information of
HDVs, where numerous existing methods can be applied. If
the problem is infeasible, which happens rarely, the parameter
can be updated adaptively. In the extreme case (θ = 0), the
controller will gracefully degrade as the pure feedforward
control.

As a result of the probabilistic uncertainty bound, the mRPI
set Fθ, which is calculated based on Wθ, is no longer a strict
bound, and thus the actual tracking error e(k) in Algorithm
1 could exceed the planned tube without new external distur-
bances. In this case, the feedforward control should also be
triggered to reduce the error. To handle this situation as well as
the new external disturbances, an event-triggered mechanism
is designed for the feedforward control in the next subsection.

B. Event-triggered Mechanism

The key is to define an event M as the trigger mechanism
for the feedforward control. Specifically, M is defined as the
event that the tracking error deviation (ẽ) exceeds the mRPI
set as

M = {ẽ(k − 1) ∈ Fθ, ẽ(k) /∈ Fθ} ,

where k indicates the current time step. The event M could be
caused either by the accumulated uncertainty or new external
disturbances. When the event M happens, the feedforward
control of f -CAV is required to be triggered, and ūf , ē are
replanned for the tracking error at the current time. Meanwhile,
if a new external disturbance does not cause the event M ,
the disturbance can be handled as the uncertainty, and the
feedforward control will not be triggered.

C. Overall Algorithm

The framework of the robust platoon control in mixed
traffic flow can be summarized in Algorithm 2. Most parts
of the algorithm are the same as Algorithm 1, whereas the
key differences are the introduction of the event-triggered
mechanism and the probabilistic uncertainty bound.

The overall algorithm consists of two modes. The first
is the default situation without external disturbances, where
no trajectory plan and prediction of n-HDV are available.
In this mode, the controller degrades as the pure feedback
control, resulting in a car-following behavior. When the event
M happens, the controller becomes the second mode, where
the feedforward control and feedback control are integrated to
control the f -CAV. After Np time steps, the external distur-
bance will be eliminated, and the controller will return to the
first mode. Whenever the event M happens, the feedforward
control will be replanned.

Algorithm 2: Algorithm of Robust Platoon Control

Compute the feedback gain K;
Initialize θ and the probabilistic uncertainty bound Wθ;
Initialize the mRPI set Fθ and the tight sets Eθ,Uθ;
if Event M happens then

Compute the feedforward control ūf , ē by solving
the optimization problem in Eq. (15-17);

for k = 1 to Np do
Observe the actual tracking error e(k);
Compute the deviation ẽ(k) = e(k)− ē(k);
if New event M happens then

Go back to the feedforward control;
end
Compute the feedback control
ũf (k) = K · ẽ(k);

Compute the actual acceleration
uf (k) = ūf (k) + ũf (k);

Implement the actual acceleration uf (k);
end
Observe the actual tracking error e(k);
if New event M happens then

Go back to the feedforward control;
end
Compute the feedback control ũf (k) = K · e(k);
Implement the feedback acceleration ũf (k);

end

V. PERFORMANCE ANALYSIS

In this section, performances of the proposed framework are
analyzed including feasibility and recursive feasibility, control
objectives, as well as computational and communicational
complexity.

A. Feasibility and Recursive Feasibility

To make Algorithm 2 feasible, two conditions are required:
first, the mRPI set is sufficiently small such that all tight
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constraints exist; second, the problem in Eq. (15-17) is feasi-
ble. For the first condition, as shown in Eq. (14), since AK
is a constant, the mRPI set can be sufficiently small, if the
probabilistic uncertainty bound Wθ is small. In the extreme
case where θ = 0, Wθ = ∅ and thus the mRPI sets are empty
sets. Therefore, the first condition can be satisfied by adjusting
the probabilistic uncertainty bound. For the second condition,
the key is to reserve sufficient control time steps Np for the
feedforward control to eliminate the initial tracking error and
satisfy the terminal constraints, as discussed in Subsection
III-C. Please note that for Wθ = ∅, Algorithm 2 degrades as
the MPC method (pure feedforward control), so the algorithm
can have the same feasibility as the MPC method.

Besides the feasibility, the recursive feasibility of MPC
methods has also been widely investigated for a long time
[37, 59, 62]. Generally, an MPC controller is called recursively
feasible if and only if for all initially feasible state and for
all optimal sequences of control inputs the MPC optimization
problem remains feasible for all time [63]. In other words, if
a recursively feasible MPC controller is feasible at the time
step, the controller will be feasible at the next time step after
conducting the optimal control input. The typical approach to
achieve the recursive feasibility is to append the original MPC
problem with a terminal state constraint.

For our algorithm, the feedforward control is only triggered
by the event M , and thus the definition of recursive feasibility
cannot be applied. Instead, we are more interested in the
problem of whether the controller is feasible at the next M
event if it is feasible at the current M event. However, it
cannot be guaranteed unless additional assumptions of external
disturbances are made, such as the boundedness assumption.
For a large-amplitude external disturbance, if our controller is
infeasible even for Wθ = ∅, the MPC controller will be also
infeasible at the initial state. Taking an extreme example, when
an HDV recklessly cuts in front of the CAV, an extremely large
external disturbance will happen, and any deceleration cannot
keep the CAV satisfying the safety constraint, irrelevant to the
specific controller.

B. Control Objectives

For single external disturbance, based on the tube method
[41], all constraints in Eq. (8) are satisfied if the Algorithm 1
is feasible. Since the safety and string stability requirements
are already included in Eq. (8), safety and string stability
are guaranteed. Moreover, the terminal constraints in Eq.
(17) are satisfied by the feedforward control. If there is no
uncertainty, i.e., v̇n = 0, the tracking error will stay at the zero
value, which indicates the stability according to Definition 1.
Similarly, for multiple external disturbances, if the Algorithm
2 is feasible for all M events, the control objectives can also
be achieved. Otherwise, as discussed above, our controller,
as well as the MPC controllers, is infeasible, and the control
objectives cannot be satisfied.

C. Computational and Communicational Complexity

For MPC methods, the feedforward control is triggered at
each time step, where the optimization problem is solved

TABLE I
THE PARAMETER VALUES USED IN THIS PAPER.

Parameter Value Parameter Value Parameter Value
n 5 n1 3 n2 3
σs 0.1 σv 0.1 ns 1.0
nv 1.0 τ 0.5 h 0.5
vmin 0 vmax 50 umax 5
Q 1 L 1 R 1

to plan the CAV trajectory, and the planned trajectory will
usually be transmitted to the upstream CAV via wireless com-
munication. Therefore, the computational and communication
complexity is determined by the frequency of feedforward
control. It is also true for our framework, as the feedback
control does not rely on the communication and its compu-
tational cost is negligible. Because the feedforward control
is event-triggered in Algorithm 2, our method can reduce
both the computational and communication burdens. Although
the basic computational resources for the feedforward control
should still be available, it provides huge potentials for design-
ing more effective computational resource allocation systems
[46, 47], including edge computing, in-vehicle computing, and
vehicular cloud computing. Moreover, the reduced communi-
cation burden enables better wireless communication systems
with less time delay and packet loss [39, 40, 48].

VI. NUMERICAL EXPERIMENTS

A. Numerical Experiment Design

This section conducts numerical experiments to verify the
performances of the proposed control framework. First, the
properties of the probabilistic uncertainty bound as well as the
mRPI set are investigated. Second, experiments are designed
to verify the communicational and computational efficiency,
compared with the MPC method. Third, control objectives are
validated regarding safety, stability, and string stability.

To achieve the above objectives, two mixed platoons and
two test scenarios are designed respectively. Besides of the
platoon in Fig. 1 (denoted as P-1), a generalized platoon with
another f -CAV is designed as shown in Fig. 3 (denoted as P-
2). The P-2 can demonstrate the framework scalability for long
mixed traffic flow. To investigate the influences of external
disturbances, two test scenarios are designed involving the
single external disturbance (scenario 1) and multiple external
scenarios (scenario 2). A Poisson process with different λ is
utilized to generate multiple external disturbances.

As the prediction method of HDVs is not the focus of
this paper, the simple car-following and prediction method is
applied. The car-following behaviors of HDVs are simulated
by the Newell car-following model with truncated normally
distributed uncertainty and predicted by the deterministic
Newell car-following model. Specifically, the normally dis-
tributed uncertainty is designed as ∆s̃ ∼ N (0, σ2

s) and
∆ṽ ∼ N (0, σ2

v), and then the distribution is truncated with
the interval [−ns, ns] and [−nv, nv] respectively. The values
of the parameters can be found in Table I.

To validate the efficiency regarding computation and com-
munication, the trigger number of the feedforward control is
compared with the MPC method, which solves the problem
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Fig. 3. Illustration of the platoon in a long mixed traffic flow denoted as P-2.

in Eq. (15) with Z = ∅ at each time step. For both methods,
we set Np = 50. To study the influence of the frequency of
external disturbances, experiments are conducted in scenario
2 with different values of λ.

The simulation is conducted at MATLAB R2017a with Intel
i7-7700U and 16G ARM. The Multi-Parametric Toolbox 3.0
[64] is utilized for the set operations, and CVX [61] is used
for solving the convex optimization problem.

B. Probabilistic Uncertainty Bound and mRPI Set

The probabilistic uncertainty bound Wθ is a critical pa-
rameter in our framework to balance the robustness and
conservativeness. To illustrate, two examples of the proba-
bilistic uncertainty bound are provided in Fig. 4 (a, b), which
shows simulation results of the n-HDV with n = 3 and
n = 5 respectively. As shown in Fig. 4 (a), the probabilistic
uncertainty bound is set as Wθ = {ws = wv = 0.2}, and the
simulation results show that

P (∆x̃3 ∈Wθ) = 0.751,

which indicates θ = 0.751. Similarly, as shown in Fig. 4 (b),
the probabilistic uncertainty bound is set as Wθ = {ws =
wv = 0.3} where θ = 0.820 for n = 5.

As pointed out in Subsection II-F, the prediction uncertainty
will accumulate along the time if it is not eliminated timely,
which is challenging and motivates the robust platoon control.
For example, the position prediction uncertainty caused by
the acceleration uncertainty will accumulate quadratically. To
illustrate, the position prediction uncertainty of the 1-HDV
is simulated along the time step in Fig. 4 (c). Consequently,
if the controller cannot mitigate the uncertainty effectively,
it will lead to system failure: constraints cannot be satisfied
and control objectives cannot be achieved. Moreover, the
prediction uncertainty will also be amplified spatially by
consecutive HDVs. To investigate this property, we simulated
different numbers of consecutive HDVs from n = 1 to
n = 20, and obtain the uncertainty bound W0.7. As shown
in Fig. 4 (d), the probabilistic uncertainty bound increases
linearly. Therefore, when determining the probabilistic uncer-
tainty bound in Algorithm 2, the number of consecutive HDVs
should be considered. To further investigate the influence of
the probability θ, we calculated the probabilistic uncertainty
bounds for a different number of consecutive HDVs and values
of θ. As shown in Fig. 4 (e), with the decrease of θ, the
probabilistic uncertainty bound Wθ decreases given a constant
number of HDVs.

(a) (b)

(c) (d)

(e)
Fig. 4. Simulation results of the prediction uncertainty of the n-HDV with
n = 3 (a), n = 5 (b), varying time steps without feedback control (c), varying
numbers of consecutive HDVs (d), and varying values of the probability θ
(e).

The penetration rate of the CAVs in the mixed traffic flow
also affects the probabilistic uncertainty bound. To study this
influence, we simulated a platoon total of 100 vehicles with
different penetration rates varying from 10% to 100%. For
each penetration rate, the probabilistic uncertainty bounds
W0.7 for all CAVs are calculated, and the box plot is provided
in Fig. 5 (a). Results show that the prediction uncertainty
decreases significantly with the increase of the penetration
rate. It is consistent with the intuition that CAVs can behave
as stabilizers to decrease uncertainty [65].

We further investigate the influence of probabilistic uncer-
tainty bounds on the mRPI set. By solving Eq. (13), we obtain
K = [0.6406, 1.0192] with the parameters in Table I. Then,
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(a) (b)
Fig. 5. (a) Simulation results of the probabilistic prediction uncertainty with
increasing penetration rates of CAVs. (b) The mRPI sets for the probabilistic
uncertainty bounds 0.1, 0.2, and 0.3.

(a) (b)

(c) (d)
Fig. 6. Simulation results of platoon P-1 in the scenario 1: without uncertainty
(a); with uncertainty (b); accumulated uncertainty (c); and accelerations (d).

the mRPI set is calculated by Eq. (14) given the probabilistic
uncertainty bound. To illustrate, three examples of mRPI sets
are provided for W = 0.1, 0.2, 0.3 in Fig. 5 (b).

C. Performance Evaluation for Platoon P-1

This subsection evaluates the performance of the proposed
method in the platoon P-1. Fig. 6 shows the results at scenario
1, where only initial external disturbance exists. To better
interpret the proposed method, the feedforward control and
feedback control are studied, respectively. Fig. 7 shows the
results in scenario 2, where multiple external disturbances
emerge following the Poisson progress with different values
of λ. To validate the computational and communicational
efficiency, the trigger numbers and wall-clock time of the
proposed method and the MPC method are compared as shown
in Fig. 8 and Table II.

Fig. 6 (a) illustrates the planned trajectory of the f -CAV
to handle the initial external speed disturbance if there is
no prediction uncertainty of HDVs. Specifically, all HDVs
follow their predecessors, while the f -CAV optimizes its
trajectory to eliminate the speed disturbance for converging
to the equilibrium speed (20 m/s). Fig. 6 (b) illustrates the
actual trajectory of the f -CAV considering the prediction
uncertainty of HDVs. As the CAV is controlled by both the

(a) (b)

(c) (d)
Fig. 7. Simulation results of platoon P-1 in the scenario 2 with different
values of λ: (a) λ = 10; (b) λ = 7.5; (c) λ = 5; (d) λ = 2.5.

Fig. 8. Trigger numbers of the feedforward control and inter-vehicular
communication of platoon P-1 in scenario 2 with different values of λ.

feedforward and feedback controllers, the actual trajectory
fluctuates around the planned trajectory in Fig. 6 (a). After the
Np = 50 time steps, the actual trajectory converges to a small
zone around the equilibrium speed, where only the feedback
control is utilized to mitigate the uncertainty. Meanwhile,
the maximal speed disturbance is decreased by the f -CAV
compared with the p-CAV, though it is increased by HDVs.
By Definition 1 and 2, the CAVs are stable and the mixed
platoon is string stable.

To validate the effectiveness of the mRPI set, all the tracking
error disturbances of the f -CAV are analyzed. As shown in
Fig. 6 (c), all the disturbances are bounded by the mRPI
set. It guarantees that the actual trajectory is always inside
the planned tube, so all constraints are satisfied. To further
interpret the proposed controller, Fig. 6 (d) demonstrates the
actual acceleration of the f -CAV, which is the combination of
the planned acceleration ū and the acceleration of the feedback
control ũ. The major trend of the f -CAV’s acceleration, i.e.,
first accelerate and then decelerate, is determined by the
feedforward control, while the fluctuations are determined by
the feedback control.

Fig. 7 further demonstrates the ability of the proposed
method in handling multiple external disturbances (scenario
2). To investigate the influence of the disturbance frequency,
different values of λ are utilized to generate the external distur-
bances, namely λ = 10, 7.5, 5, 2.5. The blue line denotes the
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trajectory of the p-CAV, the black line denotes the trajectory
of the 5-HDV, and the red line denotes the trajectory of the
f -CAV. As shown in Fig. 7, with the decrease of the λ, the ex-
ternal disturbance happens more frequently. For all four cases,
the f -CAV’s velocity can eventually converge to the zone
around the equilibrium velocity if no new external disturbance
happens. Moreover, the maximal disturbance of the f -CAV is
smaller than that of the p-CAV, though it can be amplified
by the 5-HDV. Therefore, for multiple external disturbances
with different frequencies, the proposed controller can also
guarantee stability and string stability.

Fig. 8 compares the trigger numbers of the feedforward
control and inter-vehicular communication between the MPC
method and the proposed method with different values of
λ. Since the MPC method solves the optimization problem
at each control interval, which relies on the communication
information, the trigger number of the MPC method keeps
equal to the total simulation steps (i.e., 150). For the pro-
posed method, the feedforward control, as well as the inter-
vehicular communication, is only triggered when the M event
happens. Therefore, with the increasing of the λ, the occurring
number of the external disturbances decreases, so the trigger
number of feedforward control and communication decreases.
Considering the computational burden mainly comes from the
feedforward control, the proposed method is efficient regarding
computation and inter-vehicular communication. Although the
basic computational resources for the feedforward control
should still be available, it provides huge potentials for design-
ing more effective in-vehicle computational resource allocation
systems [46, 47]. Moreover, the reduced communication bur-
den enables better wireless communication systems with less
time delay and packet loss [39, 40, 48].

To further investigate the computational cost, we also com-
pare the wall-clock time used by the MPC method and the
proposed tube MPC method. To mitigate the randomness of
the results, each simulation is repeated 10 times, and the mean
value, as well as the standard variance, is calculated. Both the
scenario 1 and 2 with different values of λ are considered. As
shown in Table II, for all scenarios, the proposed tube MPC
method is much more computationally efficient, compared
with the standard MPC method.

D. Performance Evaluation for Platoon P-2
This subsection further evaluates the scalability of the pro-

posed framework in the long mixed traffic flow. The proposed
framework is implemented at the platoon P-2 for both scenario
1 and 2. Fig. 9 shows the simulation results with different
external disturbances. The blue line denotes the p-CAV’s
velocity, the black line denotes the 3-HDV’s velocity, the red
line denotes the f -CAV-1’s velocity, and the green line denotes
the f -CAV-2’s velocity.

Fig. 9 (a) shows the results for single external disturbance.
Compared with Fig. 6 (b), the f -CAV-1’s trajectory of P-2 is
very similar to the f -CAV’s trajectory of P-1. It is reasonable
because the f -CAV-1’s situation at P-2 is similar to the f -
CAV at P-1. After the feedforward control of the f -CAV-1 is
triggered, its planned trajectory is transmitted to the f -CAV-
2, and then the feedforward control of the f -CAV-2 is also

(a) (b)

(c) (d)
Fig. 9. Simulation results of the platoon P-2 in different scenarios: (a) scenario
1; (b) scenario 2 with λ = 7.5; (c) scenario 2 with λ = 5; (d) scenario 2
with λ = 2.5.

triggered. From the perspective of f -CAV-2, the f -CAV-1 is
the predecessor and plays the role of p-CAV. Results show both
the CAVs can stabilize the velocity and decrease the maximal
disturbance, namely stable and string stable.

Fig. 9 (b-d) further investigate the controller performance
with multiple external disturbances. Similar to Fig. 7, different
values of λ are utilized to generate the external disturbances,
namely λ = 7.5, 5, 2.5. Compared with Fig. 7, the f -CAV-
1’s trajectory has similar performances as the f -CAV. For
the f -CAV-2, the controller can also effectively mitigate the
disturbances even for the consecutive external disturbances as
shown in Fig. 9 (d). All these results validate the ability of
the proposed framework for long mixed traffic flow.

VII. CONCLUSIONS

In this paper, a robust platoon control framework is pro-
posed for mixed traffic flow based on tube MPC. The challenge
of prediction uncertainty of HDVs is addressed by considering
a probabilistic uncertainty bound. The feedback control is
designed to restrict the uncertainty inside the minimal robust
positively invariant set for most of the time, while, for other
time, the feedforward control is triggered based on tube MPC.
The event M is designed for this event-triggered mechanism.
Compared with state-of-the-art platoon control methods based
on MPC, our framework can handle the uncertainty explicitly
with less burden of communication and computation. By ad-
justing the probabilistic uncertainty bound, the framework has
the flexibility to balance between the feedforward control and
feedback control. The performances of the proposed method
are validated by numerical experiments.

There are several promising future studies following this
research. First, the integration of advanced prediction models
of HDVs can further improve the control performance. Second,
taking the speed guidance from intersection control as external
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TABLE II
THE WALL-CLOCK TIME COMPARISON OF THE STANDARD MPC METHOD AND TUBE MPC METHOD FOR PLATOON P1.

Unit: second
Scenario 1 Scenario 2 with λ = 5 Scenario 2 with λ = 10

Mean Std Mean Std Mean Std
Standard MPC 870.39 14.02 994.33 116.41 1030.25 131.55

Tube MPC 6.14 0.07 25.49 2.63 18.71 2.68

disturbance, the proposed framework is promising for the joint
control of signal and mixed traffic flow.
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