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Abstract— How to generate testing scenario libraries for con-
nected and automated vehicles (CAVs) is a major challenge
faced by the industry. In previous studies, to evaluate maneuver
challenge of a scenario, surrogate models (SMs) are often used
without explicit knowledge of the CAV under test. However,
performance dissimilarities between the SM and the CAV under
test usually exist, and it can lead to the generation of suboptimal
scenario libraries. In this article, an adaptive testing scenario
library generation (ATSLG) method is proposed to solve this
problem. A customized testing scenario library for a specific CAV
model is generated through an adaptive process. To compensate
for the performance dissimilarities and leverage each test of
the CAV, Bayesian optimization techniques are applied with
classification-based Gaussian Process Regression and a newly
designed acquisition function. Comparing with a pre-determined
library, a CAV can be tested and evaluated in a more efficient
manner with the customized library. To validate the proposed
method, a cut-in case study is investigated and the results
demonstrate that the proposed method can further accelerate
the evaluation process by a few orders of magnitude.

Index Terms— Connected and automated vehicles, testing sce-
nario library, adaptive testing and evaluation, Bayesian optimiza-
tion.

I. INTRODUCTION

TESTING scenario library generation (TSLG) is a major
challenge in evaluating connected and automated vehicles

(CAVs). A scenario describes the temporal development in
a sequence of scenes, where a scene is a snapshot of the
environment including stationary elements (e.g., road geom-
etry) and dynamic elements (e.g., background vehicles) [1].
Given an operational design domain (ODD) [2], there could
exist millions of scenarios with different parameters, e.g.,
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Fig. 1. Illustration of suboptimal scenarios for a test CAV.

different maneuvers of background vehicles. A testing scenario
library is defined as a critical subset of scenarios that can be
used for the evaluation of certain performance metrics (e.g.,
safety). In the past few years, increasing research efforts have
been made to solve the TSLG problem [3]–[13] (see [14]
and references therein). However, most existing methods have
limitations in either scenario types that can be handled, CAV
models that can be applied, or performance metrics that can
be evaluated.

To overcome these limitations, a systematic framework
was proposed in our previous studies [14]–[16]. Each test-
ing scenario was evaluated by a newly proposed measure,
scenario criticality, which can be computed as a combination
of exposure frequency and maneuver challenge. The exposure
frequency can be obtained by using naturalistic driving data
(NDD). To evaluate the maneuver challenge, a surrogate model
(SM) is utilized as the exact CAV model is not available.
Performance dissimilarities between the SM and the specific
CAV under evaluation, however, usually exist and can lead to
the generation of suboptimal scenario library. The suboptimal
library may increase the number of tests in order to reach a
required evaluation precision, therefore may become the major
source of evaluation inefficiency.

Two types of suboptimal scenarios exist, as shown in Fig. 1.
Underweight scenarios represent the critical scenarios that
are ignored by the library, and overweight scenarios repre-
sent the uncritical scenarios that are included in the library.
If we denote the scenario library generated by using the
SM as “offline generated library”, and a customized library
that includes all critical scenarios specifically designed for a
CAV as “optimal library”, the differences between these two
libraries include both underweight and overweight scenarios.

The goal of this article is to generate the customized opti-
mal library by reducing the number of suboptimal scenarios
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Fig. 2. Illustration of the adaptive testing scenario library generation process.

through an adaptive testing process. An illustration of this
process is shown in Fig. 2. The customization process starts
with the test of CAV using a small set of scenarios sampled
from the off-line generated library. After the initial testing,
at each iteration, the most informative scenario is selected
and tested, following that the SM is dynamically updated and
the customized library is progressively improved, until the
threshold for the dissimilarity compensation is reached. With
the customized library, the CAV can be tested and evaluated in
a more efficient manner, comparing with the evaluation method
utilizing the offline generated library.

In the adaptive testing process, to leverage each CAV test,
Bayesian optimization techniques [17], [18] are applied. The
classification-based Gaussian Process Regression (GPR) [19]
is used to estimate the nonstationary performance dissimi-
larities, and a new acquisition function is designed to deter-
mine the most informative testing scenario in each iteration.
Both the prior knowledge (e.g., SM and offline generated
library) and observations (e.g., results from the adaptive testing
process) are utilized to customize the library. To validate the
proposed framework, a cut-in case is studied in similar settings
to those in [15]. Comparing with the TSLG framework in
[14], the new adaptive framework can further accelerate the
evaluation process by a few orders of magnitude, e.g., 10-100.

The rest of this article is organized as follows. For the
convenience of the readers, Section II briefly revisits the
offline library generation method discussed in [14]–[16].
In Section III, the problem of the adaptive testing process
is formulated. The adaptive testing scenario library generation
method is elaborated in Section IV. In Section V, a cut-in case
is presented to demonstrate the performance of the proposed
method. Finally, Section VI concludes the paper.

II. REVISIT THE TSLG METHOD

The goal of the TSLG method [14] is to generate a set of
critical scenarios, which can be used to evaluate CAVs for
certain performance indices more efficiently. If an event of
interest is denoted as A, e.g., an accident event, the perfor-
mance index can be defined as its occurrence probability:

P(A|θ) =
�
x∈X

P(A|x, θ)P(x |θ), (1)

where x denotes the decision variables of the testing scenarios
(e.g., maneuvers of background vehicles), X denotes the

feasible set of x , and θ denotes the pre-determined parameters
by the ODD. Since θ keeps constant for a certain ODD,
it will be omitted from now on to simplify the notations. So,
the Eq. (1) is rewritten as

P(A) =
�
x∈X

P(A|x)P(x). (2)

Essentially the on-road test is to evaluate the performance
index in a naturalistic driving environment. Taking the cut-
in case as an example, if a test CAV drives on public roads,
experiences n cut-in scenarios, and has m accident events,
the accident rate of the CAV in the cut-in scenarios is estimated
as

P(A) =
�
x∈X

P(A|x)P(x),

≈ 1

n

n�
i=1

P(A|xi ), xi ∼ P(x), (3)

≈ m

n
,

where the last two equations are derived by Monte Carlo
theory [20]. Here the cut-in scenarios on public roads follow
the naturalistic distribution, i.e., xi ∼ P(x). Because the
accident event A in the naturalistic driving environment is
very rare, the required number of tests is intolerably large
for reasonable estimation precision [21]. We refer this as the
rareness property in our paper.

To mitigate this issue, importance sampling techniques were
applied by [6] as

P(A) =
�
x∈X

P(A|x)P(x),

=
�
x∈X

P(A|x)P(x)

q(x)
q(x), (4)

≈ 1

n

n�
i=1

P(A|xi )P(xi )

q(xi)
, xi ∼ q(x),

where q(x) denotes an importance function satisfying

q(x) ∈ [0, 1],
�
x∈X

q(x) = 1, P(x) > 0 ⇒ q(x) > 0. (5)

Comparing with Eq. (3), testing scenarios are sampled via
the importance function q(x) instead of P(x). If q(x) can
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increase the testing priority of critical scenarios, the evaluation
efficiency can be improved.

For a certain estimation precision, the minimal number
of tests is determined by the importance function, and the
required estimation precision can be measured by relative half-
width for a given confidence level [22]. With the confidence
level at 100(1 − α)%, the relative half-width is defined as

lr = �−1(1 − α/2)

μA

�
V ar(μA), (6)

= �−1(1 − α/2)

μA

σ√
n

,

where μA = P(A), �−1 denotes the inverse cumulative
distribution function of standard normal distribution N (0, 1),
and V ar(μA) = σ 2/n denotes the estimation variance. For a
pre-determined half-width β, the minimal number of tests is
derived as

n ≥
�

�−1(1 − α/2)

μAβ

�2

σ 2. (7)

Therefore, the evaluation process has higher efficiency with a
smaller σ 2. By the importance sampling theory [23], the esti-
mation variance can be derived as

σ 2 =
�
x∈X

(P(A|x)P(x))2

q(x)
− μ2

A, (8)

which is determined by the importance function. To obtain an
importance function with small variance, a heuristic search-
ing method was proposed in [6], which performs well in
simple cases for safety evaluation. For complex cases and
other metrics (e.g., functionality), the construction of a proper
importance function remains a huge challenge.

To solve this problem, the scenario criticality was newly
defined in [14] as a combination of maneuver challenge
(P(S|x)) and exposure frequency (P(x)) as

V (x)
def= P(S|x)P(x), (9)

where S denotes the event of interest with the SM of CAVs.
Integrated with a ε-greedy sampling policy, the importance
function is essentially constructed as

q(x) =
�

(1 − �)V (x)/W, x ∈ �
�/(N(X) − N(�)), x /∈ �

(10)

where � denotes the set of critical scenarios (i.e., the library),
N(X) and N(�) denote the scenario numbers in the sets, and
W is a normalization factor as

W =
�
x∈�

V (x). (11)

The constructed importance function was justified by theoret-
ical analysis and case studies regarding evaluation accuracy
and efficiency in [14]–[16].

As discussed above, the maneuver challenge (P(S|x)) is
evaluated by using an SM of CAV. However, performance
dissimilarities between the SM and CAV models usually
exist and can lead to the generation of suboptimal scenario
library. The suboptimal library may increase the variance σ 2

and therefore decrease the evaluation efficiency. To further
improve the evaluation efficiency, the problem of adaptive
testing scenario library generation (ATSLG) is formulated and
addressed in this article.

III. PROBLEM FORMULATION

In this section, the problem of ATSLG is formulated as
a Bayesian optimization problem. Specifically, the ATSLG
problem is analyzed in Subsection III-A. In Subsection III-
B, the Bayesian optimization scheme is presented, and major
challenges are analyzed.

A. ATSLG Problem

The goal of the ATSLG is to minimize the estimation
variance σ 2 by as few number of tests as possible. As dis-
cussed above, the key is to compensate for the performance
dissimilarities between the SM and the CAV under test. The
dissimilarity function can be defined as

f (x)
def= P(A|x) − P(S|x), x ∈ X. (12)

Each test of the CAV will provide one observation of f (x).
Denote f̃ (x) as an estimation of f (x), and then the SM can
be updated with the compensation as

P(S�|x) = P(S|x) + f̃ (x), x ∈ X, (13)

where S� denotes the event of interest with the updated SM.
The importance function can be constructed via the following
equations:

f̃ (x)
(13)→ P(S�|x)

(9)→ V (x)
(10)→ q(x), (14)

and the estimation variance can be further obtained as

q(x)
(8)→ σ 2. (15)

Therefore, with the compensation f̃ , the estimation variance
should be reduced. If the mapping relation is denoted as a
function σ 2( f̃ ), the ATSLG problem can be formulated as

min
f̃ ∈F

σ 2( f̃ ), (16)

where F denotes the function space of f̃ .
As indicated in Theorem 2 in [14], the optimal solution

of Eq. (16) is obtained if the dissimilarities are exactly
compensated, i.e., f̃ ∗ = f . Generally, more observations of f
can lead to better compensation. However, each observation of
f required one real vehicle testing, which is time-consuming
and cost-expensive. Therefore, the objective function should
be optimized with as few observations as possible.

To solve the problem, there are two critical subproblems.
The first is how to select each test scenario x for the new
observation of f (x). The informativeness of each scenario
should be evaluated in the sense that how much information
the new observation can provide for reducing the estimation
variance. At each iteration, the most informative scenario
should be selected for the next observation. The second is how
to update the compensation function f̃ (x) for smaller σ 2 by
leveraging all the existing observations and prior knowledge.
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B. Bayesian Optimization Scheme

Bayesian optimization tries to optimize an unknown func-
tion f (x) by as few observations as possible [17]. It has
been widely applied in various fields including intelligent
transportation systems [24]–[29] (see [18], [30] and references
therein). It provides a powerful and flexible scheme especially
for the optimization problems with expensive and black-box
objective functions. The basic idea is to assume a prior prob-
abilistic model for f (x) and then exploit this model to decide
where to observe f (x) next, while integrating out uncertainty.
Prior knowledge can be well utilized in the construction of
the prior probabilistic model. To decide the next point for
observation, various acquisition functions have been proposed
for the measurement of the informativeness [18], e.g., expected
improvement, knowledge gradient, entropy search, and predic-
tive entropy search. With a properly designed acquisition func-
tion, the most informative scenario can be selected. Posterior
knowledge can be obtained by integrating prior knowledge and
observations.

In this article, we propose to apply the Bayesian optimiza-
tion scheme for the ATSLG problem. Specifically, the scheme
of the ATSLG problem is described in Algorithm 1. The SM
and the offline generated library can be utilized as prior knowl-
edge. The informativeness of each scenario can be evaluated
by the acquisition function, and f̃ (x) can be estimated as the
posterior knowledge. Then, the SM as well as the library can
be improved accordingly.

Algorithm 1: Scheme of the ATSLG process.
Input: SM and offline generated library
Output: Evaluation results of the CAV

1 Step 1: Observe f by testing the CAV with initial testing
scenarios. (Sec IV-A)

2 Step 2: while stop criterion is not satisfied do
3 Step 2.1: Obtain the estimation f̃ (Sec IV-B);
4 Step 2.2: Update SM and library (Sec IV-C);
5 Step 2.3: Decide next iteration of testing scenarios

(Sec IV-D);
6 Step 2.4: Observe f by testing the CAV with new

scenarios;
7 end
8 Step 3: Test and evaluate the CAV with the customized

library (Sec IV-E).

When applying the Bayesian optimization scheme to the
ATSLG problem, there are three major challenges as follows:

First, the ATSLG problem optimizes in the function
space, f̃ ∈ F , instead of the parameter space, x ∈ X,
as shown in Eq. (16). Essentially, the function space is
infinite-dimensional, and optimization in the function space
belongs to the domain of infinite dimensional analysis [31].
For the common Bayesian optimization problems, however,
the decision variable x ∈ X is finite-dimensional, which is less
complex and challenging. Although the function space can be
simplified as a finite-dimensional space after the discretization,
its dimension is still much higher than the decision variable.
In the cut-in case of this article, for example, the dimension

of f̃ is 3,420 after discretization, while the dimension of x is
only 2.

Second, performances of a CAV may change more dras-
tically in certain scenario neighborhoods than others, and
therefore the covariance of the dissimilarity function can be
highly non-stationary and nonlinear.

Third, the objective function σ 2 is unavailable for the
ATSLG problem. As shown in Eq. (8), σ 2 cannot be calcu-
lated unless μA is known, which is exactly what needs to
be evaluated. However, most existing acquisition functions
of Bayesian optimization methods are calculated based on
the availability of objective functions. Consequently, a new
acquisition function needs to be designed.

We aim to address the above challenges in the following
section.

IV. ADAPTIVE TESTING SCENARIO LIBRARY GENERATION

In Subsection IV-A, to “prime the pump” with initial testing
scenarios, a sampling mechanism that balances the exploitation
of the offline generated library and exploration outside the
library is designed. Such a sampling mechanism will provide
a sketch of the dissimilarity function. In Subsection IV-B,
different from most Bayesian optimization methods where
explicit objective functions are estimated, the dissimilarity
function is estimated by the Gaussian process regression
(GPR) method. To handle the non-stationary challenge, sce-
narios are classified into two groups before applying the GPR
method, resulting in the classification-based GPR method. In
Subsection IV-C, the SM is compensated with the estimated
dissimilarity function, and the new library is generated accord-
ingly. Furthermore, in Subsection IV-D, the informativeness of
each scenario is measured by the estimated improvement of
the evaluation efficiency, and then a new acquisition function
is designed. Finally, the overall algorithm is summarized in
Subsection IV-E.

A. Initial Testing Scenarios

To provide a sketch of the dissimilarity function, we should
balance the exploitation of the offline generated library and
exploration outside the library. To this end, a simple yet
effective policy is proposed as follows. Since scenarios of the
library have higher testing priority, they are more likely to
be overweighted. To find overweight scenarios, the library is
sampled according to scenario criticality values. Similarly, sce-
narios outside the library are more likely to be underweighted.
To find underweight scenarios, scenarios outside the library
are randomly sampled with a probability γ . Comparing with
the � in Eq. (10), the value of γ is much larger, e.g., 0.5.
Similar to the “No Free Lunch Theorem” [32], if there is
no additional information about locations of the underweight
scenarios, any searching scheme is no better than random
sampling. Incorporating all these considerations, the initial
testing scenarios are sampled as

P(x0) =
�

(1 − γ )V (x0)/W, x0 ∈ �,
γ/(N(X) − N(�)), x0 ∈ X\�,

(17)

where x0 denotes an initial testing scenario.
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B. Dissimilarity Function Estimation

The dissimilarity function is estimated by the GPR method
[19], because of the following advantages. As a non-parametric
method, it is not limited by a functional form and thus is flex-
ible and powerful for estimating highly nonlinear functions.
Moreover, it is also convenient to add prior knowledge of the
specific problem by selecting different covariance functions.
In this article, a non-stationary covariance function is designed
by the classification-based GPR method. Furthermore, besides
the function estimation, it can also provide a probability
distribution over the function estimation, which captures the
estimation uncertainty. The informativeness of each scenario
can be evaluated based on the estimation uncertainty.

The basic idea is to use a Gaussian process (GP) to
describe a probability distribution over the functions. Specif-
ically, the value of f (x) at each scenario x is viewed as a
Gaussian random variable, and values of f (x) at all scenarios
follow a joint Gaussian distribution. As a result, f (x) can be
represented by the GP as

f (x) ∼ GP �
m(x), k(x, x �)

�
, (18)

where both x and x � denote scenarios, m(x) denotes the mean
function, and k(x, x �) denotes the covariance function.

Based on the GP, the values of f (x) for unobserved
scenarios can be estimated by the regression, namely the
GPR. Denote N points of scenarios with observations as
XN = {xn ∈ X}N

n=1, and N∗ points of scenarios without
observations as XN∗ = {xn∗ ∈ X}N∗

n∗=1. An observation of
f (x) is equivalent to one test of the CAV, and the observation
results are denoted as f (XN ). As elaborated in [19], f (XN∗ )
can be estimated by the posterior probability distribution as

f (XN∗)| f (XN ) ∼ GP
	

f̃XN (XN∗ ), σ 2
P,XN

(XN∗ )



, (19)

where the mean f̃XN (XN∗ ) indicates the estimation, and the
variance σ 2

P,XN
(XN∗ ) indicates the estimation uncertainty.

A nonstationary covariance function is designed by incorpo-
rating the Gaussian process classification (GPC). As discussed
in [30], there are various approaches for designing a non-
stationary covariance function, such as nonstationary kernels,
partitioning, and heteroscedasticity. Here we utilize the idea
of partitioning, which divides the variable space into several
regions and applied GPR in each region respectively to handle
the nonstationary issue. Different from the deterministic clas-
sification method, GPC provides a probability distribution of
different classes for each variable. As a result, a variable could
belong to multiple classes with different probabilities and,
therefore, be estimated by the GPR in each class respectively.
The final estimation of the variable is the expectation of all
these estimation results. In this article, scenarios are divided
into two classes, suboptimal scenarios (y(x) = +1) and
optimal scenarios (y(x) = −1), by the values of f (x) as

y(x) =
�+1, f (x) �= 0
−1, f (x) = 0

. (20)

The class labels of the scenarios XN , i.e., y(XN ), are calcu-
lated based on the observations. Let XN1 denote the observed
suboptimal scenarios and XN2 denote the observed optimal

scenarios. To classify the unobserved scenarios, y(XN∗ ) can
be estimated by the posterior probability as

P (y(x) = +1|y(XN )) , x ∈ XN∗ , (21)

where the analytic equations can be found in [19]. For notation
simplification, Eq. (21) is denoted as P1,XN (x), and

P2,XN (x) = 1 − P1,XN (x). (22)

Finally, the GPC-based GPR results of f (x) can be repre-
sented as

fXN (x) ∼ (23)⎧⎨
⎩
N

	
f̃XN1

(x), σ 2
P,XN1

(x)



, with P1,XN (x),

N
	

f̃XN2
(x), σ 2

P,XN2
(x)



, with P2,XN (x),

where N ( f̃XN1
(x), σ 2

P,XN1
(x)) denotes the GPR results in

suboptimal scenarios, and N ( f̃XN2
(x), σ 2

P,XN2
(x)) denotes the

results in optimal scenarios. The estimation of f (x) can be
obtained by the expectation as

f̃XN (x) = P1,XN (x) f̃XN1
(x) + P2,XN (x) f̃XN2

(x). (24)

C. Surrogate Model Update and Library Generation

One limitation of the GPR method is the Gaussian assump-
tion, which would produce a huge number of small yet non-
zero values. It is inconsistent with the rareness property of
the SM that most values are zero. To maintain the rareness
property, a scenario is set as uncritical, if both prior and
posterior knowledge indicate it is very likely to be uncritical.

Specifically, with the compensation f̃XN (x) in Eq. (24),
the SM is updated by

PE (SXN |x) =
�

P(S|x) + f̃XN (x), x ∈ X/U,
0, x ∈ U,

(25)

where the set U is defined to keep the rareness property. It is
defined as

U = �
x ∈ X : P(S|x) = 0, P1,XN (x) ≤ Pth

�
, (26)

where Pth is a pre-determined probability threshold for clas-
sification, e.g., 0.5. Scenarios x ∈ U are indicated uncritical
by both the prior knowledge (P(S|x) = 0) and the posterior
knowledge (P1,XN (x) ≤ Pth). Based on the updated SM,
a new importance function qXN (x), as well as a library, can
be constructed by Eq. (14).

D. Acquisition Function Design

The acquisition function should be designed to measure
the informativeness of each scenario for selecting the next
test scenario. Since the objective function, σ 2, is unavailable,
a surrogate measure is designed by the estimated reduction of
σ 2. Based on the surrogate measure, a new acquisition function
is designed leveraging the estimation of the dissimilarity
function and the estimation uncertainty.
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As indicated in Theorem 2 in [14], Eq. (8) can be approx-
imated by

σ 2 ≈
�
x∈X

P2(x)

q(x)
f 2(x). (27)

The reduction of σ 2 for each testing scenario can be approx-
imated by the surrogate measure P2(x)

q(x) f 2(x). Based on the
estimation results fXN (x) in Eq. (23), the informativeness of
each scenario can be evaluated by its expectation over the
classification probability and the estimation uncertainty as

E IXN (x)
def= E

�
P2(x)

qXN (x)
f 2
XN

(x)

�
, (28)

where qXN (x) denotes the updated importance function
according to Eq. (14). Applying the integration by parts and
Eq. (23), the analytical form of Eq. (28) can be derived as

E IXN (x) = P2(x)

qXN (x)

�
P1,XN (x)E1 + P2,XN (x)E2

�
, (29)

where

Ei
def= f̃ 2

XNi
(x) + σ 2

P,XNi
(x). (30)

To better explore the boundaries of the classification,
the classification variance σ 2

C,XN
(x) is further incorporated as

IXN (x) = w
E IXN (x)

UE
+ σ 2

C,XN
(x)

UC
, (31)

where w is a weight to balance the two terms, and UE , UC

are normalization factors to make the metrics comparable.
The classification variance can be calculated by the GPC
method [33]. Recall that the scenarios x ∈ U are indicated
uncritical. Therefore, the acquisition function, which exploits
existing information, is unlikely to explore these scenarios.
To search possible “unexpected” suboptimal scenarios, a small
probability (β) of random sampling is applied. Finally, the next
iteration of testing scenario is decided by

xN+1 =
�

maxx IXN (x), x ∈ X/U, with 1 − β
random sampling for x ∈ U, with β

. (32)

E. Overall Algorithm

As shown in Fig. 2 and Algorithm 1, the test of a CAV
includes three steps, described in the following:

The first step is to test the CAV with initial scenarios
generated as in Subsection IV-A. The testing results provide
a sketch of the dissimilarity function.

Based on the sketch, the second step is to test the CAV with
the most informative scenario iteratively. At each iteration,
the dissimilarity function is estimated as in Subsection IV-B,
the SM as well as the library is updated as in Subsection IV-C,
and the acquisition function is calculated to determine the next
test scenario as in Subsection IV-D. The iterative process will
stop if the number of tests is larger than the pre-determined
budget or the estimation precision is satisfied.

With the updated library, the third step is to test and evaluate
the CAV with the �-greedy sampling policy as shown in
Eq. (10). The minimal number of tests can be determined by
Eq. (7), and the CAV performance can be evaluated by Eq. (4).

Fig. 3. Illustrations of the cut-in case.

Fig. 4. The exposure frequency and maneuver challenge of the cut-in case
based on the FVDM.

V. CUT-IN CASE STUDY

In this section, the proposed method is demonstrated in a
cut-in case for safety evaluation.

A. Case Description

The cut-in case is illustrated in Fig. 3 (a), where a back-
ground vehicle (BV) makes a lane change in front of the test
CAV. Similar to previous work [6], [15], the decision variables
are constructed as

x = (R, Ṙ), (33)

where R and Ṙ denote the range and range rate (the longitudi-
nal speed difference) of the two vehicles at the cut-in moment.
The accident event is defined as the minimal distance between
the two vehicles is smaller than a threshold, i.e., dmin = 1m.
The safety performance is evaluated by the accident rate of the
CAV on public roads. A CAV car-following model used in [6],
[15], which combines adaptive cruise control and autonomous
emergency braking functions, is evaluated.

B. Offline Library Generation

The TSLG method in [14] is conducted to generate the
offline library. To estimate the exposure frequency of the cut-
in scenarios, NDD from the Safety Pilot Model Deployment
program at the University of Michigan [34] is utilized. A total
number of 414,770 qualified cut-in events are successfully
obtained. The joint probability distribution of the cut-in range
and range rate (i.e., P(x)) is shown in Fig. 4 (a).

To determine the maneuver challenge, the Full Velocity
Difference Model (FVDM) is adopted as the SM because it
is one of the most widely used car-following models repre-
senting human drivers [35]. It is worth noting that, to make
the dissimilarity prominent, the selected SM in this case is
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TABLE I

THE PARAMETER VALUES OF THE CUT-IN CASE

Fig. 5. The offline generated library of the cut-in case for safety evaluation
based on the FVDM.

different from the Intelligent Driving Model adopted in [15].
Specifically, the car-following acceleration is determined by

u(k + 1) = C0
�
V1 + V2 tanh(C1(R(k) − L) − C2) − Ṙ(k)

�
,

where u(k + 1) denotes the acceleration of the CAV at time
step k +1, C0, V1, V2, C1, L, and C2 are constant parameters.
Similar to [36], the constraints of acceleration and velocity are
added to make the model more practical, i.e., model accident-
prone behaviors, as

vmin ≤ v ≤ vmax , amin ≤ u ≤ amax . (34)

All calibrated parameters in [35] are adopted as listed
in Table I. Fig. 4 (b) shows the safety performance of the
constructed SM, where the SM has accidents in the yellow
region.

To obtain critical scenarios and construct the library,
the threshold for critical scenarios is determined as

V (x) >
1

N(X)
= 2.9 × 10−4, (35)

where N(X) denotes the total number of scenarios, and
N(X) = 47 × 76 = 3, 420. The range and range rate are
discretized by 2m and 0.4m/s respectively, and their bound-
aries are (0, 90] and [−20, 10]. Fig. 5 shows the obtained
probability distribution combining both exposure frequency
and maneuver challenge. The colors denote the sampling
probabilities of the scenarios. In this case, the generated library
contains a total number of 342 critical scenarios, which is
about 10% of all scenarios.

C. Adaptive Library Generation

After the offline scenario library is generated, 50 scenarios
are sampled as initial testing scenarios, and then 50 iterations
of adaptive testing are conducted. As discussed in Section IV-
E, at each iteration, the CAV is tested for one time in the
selected scenario. The MATLAB toolbox in [37] is utilized to
execute the GPR and GPC. The squared exponential with auto-
matic relevance determination covariance function is applied
for the regression and classification as

k(x, x �) = σ 2
f exp

�
−1

2

D�
d=1

�
xd − x �

d

λd

�2
�

, (36)

where D denotes the dimensions of x . σ f and λd are hyper-
parameters. As pointed out in [19], the squared exponential
function is probably the most widely used covariance function,
and the automatic relevance determination is usually used
for determining the hyper-parameters of the specific problem.
Please note that this covariance function is neither unique nor
optimal for the problem, and further investigation is required
for the design of better covariance functions. The computation
is conducted with MATLAB 2017a, in a workstation equipped
with Intel i7-7700 CPU and 16G RAM, and takes about
48 seconds in total.

Fig. 6-8 show the results of the adaptive library generation
process. The initial testing results are shown in Fig. 6 (a),
where the red dots denote the observed suboptimal scenarios,
and the black dots denote the observed optimal scenarios.
A sketch of the dissimilarity function is obtained by the
proposed method as shown in Fig. 6 (b). To illustrate the
superiority of the proposed method, the GPR method in [37]
with the same covariance function is also applied for the
initial testing results as a comparison, as shown in Fig. 6
(c). Comparing with the ground truth in Fig. 6 (d), the GPR
method is much less accurate than the proposed method. The
major reason is that the dramatic change at the boundary of
the dissimilarity function cannot be captured by the stationary
covariance function.

As shown in Fig. 7 (a), after 5 iterations of the adaptive
testing process, performance dissimilarities between the SM
and the CAV are much compensated. Fig. 7 (e) shows that
the acquisition function can capture both the classification
uncertainty and the regression variances. The maximization
of Eq. (32) is obtained by enumerating all possible scenarios
x ∈ X/U. After 50 iterations, the SM has been well devel-
oped and the dissimilarities are almost eliminated, as shown
in Fig. 7 (b) and (d). Comparing with the offline generated
library in Fig. 5, the customized library has been improved
significantly, as shown in Fig. 8.

D. CAV Evaluation

With the customized library, the CAV is further tested
and evaluated. The accident rate of the CAV is estimated
by the on-road test method (i.e., NDD evaluation) and the
evaluation method with the offline generated library (i.e.,
offline library evaluation) as two baselines. Results are shown
in Fig. 9. The blue line denotes the results of the offline
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Fig. 6. (a) Testing results of the initial testing scenarios including the
observed suboptimal scenarios (red dots) and the observed optimal scenarios
(black dots); (b) Regression results by the proposed method; (c) Regression
results by the GPR method [37]; (d) Ground truth of the dissimilarity function.

Fig. 7. The results of the adaptive library generation for the cut-in case.

library evaluation method, and the bottom x-axis denotes
its number of tests. The red line denotes the results of the
adaptive library evaluation method, and the top x-axis denotes
its number of tests. Results show that all three methods can
converge to the same accident rate after a sufficient number

Fig. 8. The customized library of the cut-in case for safety evaluation.

Fig. 9. Results of the CAV evaluation for the cut-in case.

of tests (Fig. 9 (a) and (c)). To compare the convergence
speed, the relative half-width is estimated by Eq. (6) with
the three methods in Fig. 9 (b) and Fig. 9 (d). To reach
the 0.2 relative half-width, the total required number of tests
is 1.9 × 105, 2,090, and 121, respectively. Note that the
121 tests include 50 tests of initial scenarios, 50 tests of the
adaptive testing process, and 21 tests of the CAV evaluation
process. Therefore, the proposed ATSLG method accelerates
the evaluation process by 1570 times and 17 times respectively,
comparing with the on-road test method and the evaluation
method with the offline generated library. To further validate
the reliability of the ATSLG method, we repeat the experiment
100 times and calculate the required test number for each
experiment. Results show the average required test number
is 121.44 and the standard deviation is 18.46. The required
numbers of tests in all 100 experiments are less than the
offline library evaluation method. Fig. 10 shows the numbers
of required tests with different required relative half-widths.
By decreasing the relative half-width, the evaluation precision
is increasing, and the advantage of the proposed method
becomes more obvious.
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Fig. 10. The required number of tests and reduced number of tests with
decreasing the required relative half-width.

VI. CONCLUSION

In this article, the adaptive testing scenario library gener-
ation (ATSLG) method is proposed to generate customized
libraries for CAV testing and evaluation. Comparing with the
TSLG method discussed in [14]–[16], the proposed method is
more efficient and robust.

The major idea is to generate the customized library by com-
pensating the dissimilarities between SM and CAV through
an adaptive testing process. To leverage each test of CAV,
the Bayesian optimization scheme is applied. A classification-
based Gaussian process regression is adopted to estimate the
non-stationary dissimilarity function, and a new acquisition
function is designed to determine new testing scenarios in each
iteration. A cut-in case is investigated for safety evaluation.
Comparing with the TSLG method, the total number of
required tests is further decreased by a few orders of magni-
tude (e.g., 10-100 times). More importantly, the acceleration of
the evaluation process is more prominent if higher evaluation
precision is required.

There are still many interesting topics that can be further
investigated. For example, when the ATSLG problem in high-
dimensional scenarios becomes more complex, how to address
the high-dimensional issue in the adaptive process remains as
a problem. Moreover, it is interesting to apply the proposed
method in more realistic CAV testing platforms with pre-
established scenario libraries.
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