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Abstract
In the simulation-based testing and evaluation of autonomous vehicles (AVs), how background vehicles (BVs) drive directly
influences the AV’s driving behavior and further affects the test results. Most existing simulation platforms use either prede-
termined trajectories or deterministic driving models to model BV behaviors. However, predetermined BV trajectories can-
not react to AV maneuvers, and deterministic models are different from real human drivers because of the lack of stochastic
components and errors. Both methods lead to unrealistic traffic scenarios. This paper presents a learning-based stochastic
driving model that meets the unique needs of AV testing (i.e., interactive and human-like stochasticity). The model is built
based on the long short-term memory architecture. By incorporating the concept of quantile regression into the loss func-
tion of the model, the stochastic behaviors are reproduced without prior assumption of human drivers. The model is trained
with the large-scale naturalistic driving data (NDD) from the Safety Pilot Model Deployment project and compared with a
stochastic intelligent driving model (IDM). Analysis of individual trajectories shows that the proposed model can reproduce
more similar trajectories of human drivers than IDM. To validate the ability of the proposed model in generating a naturalistic
driving environment, traffic simulation experiments are implemented. The results show that traffic flow parameters such as
speed, range, and time headway distribution match closely with the NDD, which is of significant importance for AV testing
and evaluation.
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Testing and evaluation of autonomous vehicles (AVs)
has become an active research topic in the past few years
(1–7). Among three major testing methods (simulation,
test track, and on-road) (8), simulation is the most cost-
effective, efficient, and safe method, which attracts signif-
icant attention especially in the early development stage
of AVs (9–12). To evaluate the performance of AV mod-
els in a simulation environment, background vehicles
(BVs) need to be generated to interact with the AV mod-
els in different testing scenarios (13). To model driver
behaviors for the purpose of AV testing, the following
features should be included:

1. Interactive: The BVs should react to the AV beha-
vior in real time. When considering AV testing in
a realistic driving environment such as highway

driving environments, the interactive behaviors
will affect the test results. For example, the inter-
activity is significant for functions like overtaking,
highway merging, and unprotected left turn.

2. Human-like: The BVs should act like a human
driver with stochastic components and errors.
For example, different driving styles or mental
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states of a driver may lead to variation in driving
behavior even in the same traffic environment.

In the past few years, two main methods have been
proposed to model BV behaviors for AV testing. In the
first method, BV behaviors are defined before the testing.
The method is firstly used for testing advanced driver
assistant systems like adaptive cruise control and auton-
omous emergency braking. The speed profile of the lead-
ing vehicle is predefined with a combination of constant
speed, acceleration, or jerk to generate the testing matrix
(14–16). However, the produced trajectories are not
human-like as human drivers usually behave much more
stochastically. Another commonly used approach to
apply predefined trajectories is to utilize the real-world
data collected by vehicles equipped with multiple sensors
to replicate the testing scenarios (17). Although the beha-
viors of human drivers can be precisely captured, the
main problem of using predefined BV trajectories is that
the testing is not interactive, because BVs cannot adjust
their maneuvers dynamically based on AV behaviors.

The second method models BV behaviors with micro-
scopic traffic flow models, which is an interactive
approach. Based on certain driver behavior rules, the
motion of each BV at each simulation time step can be
updated according to the current traffic state. However,
most existing driving behavior models are deterministic,
such as Newell’s (18) model, intelligent driving model
(IDM) (19), and Gipps’ (20) model, which cannot cap-
ture real human driver behaviors. Consequently, the AV
may pass the test by just ‘‘remembering’’ the experienced
scenarios.

Recently, several studies have focused on modeling
stochastic driving behaviors by adding noise to existing
deterministic models. Based on Newell’s model, Treiber
et al. (21) proposed a stochastic desired acceleration
model and added Gaussian noise to the driver’s desired
acceleration. Laval et al. (22) extended the IDM model
(19), optimal velocity model (23), and velocity difference
model (24) by adding Gaussian noise to the driver’s
desired acceleration. Most existing models introduce a
noise term to a deterministic model to achieve a stochas-
tic driving behavior. The noise added is commonly the
Gaussian noise (21–24). However, as the distribution of
the driving behavior has been proven to be asymmetric
(25–27), applying symmetric Gaussian distribution to
describe the stochasticity of the driving behavior is ques-
tionable. To the best of the authors’ knowledge, most of
these models were designed for traffic flow analysis, and
there is no existing model designed to capture the stochas-
tic human driving behaviors, especially for AV testing.

There are two recent works designed to meet the
unique requirements of driving models for AV testing.
Yang and Peng (26) developed a car-following model

with perceptual limitation, time delay, and distraction of
human drivers. These effects were modeled as influencing
parameters to design a stochastic model. However, the
fixed types of effects limited the accuracy of the model
and some human-related parameters are difficult to
obtain. Feng et al. (13) and Yan et al. (28) proposed an
empirical method to generate a naturalistic testing envi-
ronment for AV testing. Stochasticity is introduced by
sampling the driver behavior from the corresponding
behavior distribution. However, as the empirical model
is essentially a large-scale table, it suffers from discretiza-
tion errors.

This paper proposes a learning-based stochastic driv-
ing model to meet the unique needs (i.e., interactive and
human-like stochasticity) for the assessment of AVs. The
goal of the model is to generate the action distribution
that is consistent with the naturalistic driving data
(NDD), given current vehicle states. Then by sampling
the action from the distribution at each time step, the
model can interact with the AV in a stochastic and realis-
tic way. To achieve this goal, the quantile regression
(QR) (29) method is incorporated into the learning pro-
cess. Instead of one single output (e.g., expected accelera-
tion) as commonly designed in existing methods, this
study method provides a series of outputs, which are
designed as the different quantiles of actions.
Correspondingly, the pinball loss function (29) is applied
to calculate loss. By decreasing the loss function, the out-
put actions learn to be the quantiles, which can fit the
NDD via the kernel density estimation (KDE) (30). To
further capture the temporal dependency of the behavior
model, the long short-term memory (LSTM) (31, 32)
recurrent neural network (RNN) architecture is utilized.
The proposed method is referred to as QRLSTM here-
after in this paper. To validate the effectiveness of the
proposed method, a large-scale naturalistic driving data-
base is utilized from the Safety Pilot Model Deployment
(SPMD) project (33). Simulation results show that the
proposed QRLSTM model can represent human driving
behaviors at both microscopic and macroscopic levels,
which greatly enhances the previous studies by providing
a human-like interactive driving environment for AV
testing and evaluation.

The new model has two significant advantages. First,
it does not apply any assumption of the distribution of
human driving error or require any prior knowledge of
human drivers. With the QR model structure and KDE,
the stochasticity of human driving is obtained in a data-
driven way. Second, the model has the ability to generate
a realistic driving environment, which is of significant
value for AV testing and evaluation.

The rest of this paper is organized as follows. The
method section formulates the modeling problem and
describes the structure of the QRLSTM model. The next
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section introduces the model training process. After that,
simulation experiments are presented, followed by the
results and discussion. Conclusions and further research
are provided in the final section.

Method

Problem Formulation

In the introduction section, two features (i.e., interactive
and human-like stochasticity) are proposed for BVs to
generate a realistic traffic environment for AV testing.
The behavior modeling problem of BVs is formulated as
follows.

Interactive Driving Behavior. A microscopic driving model
can realize the interaction of the BV with AV as well as
other BVs. The goal of a microscopic driver behavior
model fd is to calculate or predict the action (e.g., speed
or acceleration) of the BV ŷt + 1 at time step t + 1, given
the traffic state xt at time step t, that is,

ŷt + 1 = fd(xt), ð1Þ

where traffic state xt refers to the dynamic state of BV
and all vehicles around it, including AV. In an AV testing
simulation, the action of the AV will change the traffic
state and BV will calculate the next action accordingly.
In this way, the microscopic driving model realizes the
interaction between BVs and the AV.

In the car-following situation, the traffic state x typi-
cally only considers the velocity of the BV v, the velocity
of the AV vl, the bumper-to-bumper range between the
BV and the AV r, the range rate between the BV and the
AV rr, and acceleration of the BV a, that is,
x= ½v, vl, r, rr, a�. The action could be either the velocity
or acceleration of the BV, denoted as v or a. Therefore a
car-following model could be written as

vt+ 1 = fd(vt, v
l
t, rt, rrt, at), ð2Þ

or at+ 1 = fd(vt, v
l
t, rt, rrt, at): ð3Þ

For example, the IDM model has the following form:

at+ 1 = a½1� (
vt

v0
)4 � (

s0+ vtT + vtrrt

2
ffiffiffiffi
ab
p

rt

)2�, ð4Þ

where v0, s0, a, b, T are constants (19). Therefore, the
IDM model could be simplified as

at+ 1 = fIDM (vt, rt, rrt): ð5Þ

Stochastic Driving Behavior. In actual driving scenarios,
human drivers do not behave deterministically as
described in the previous section, resulting in the need

for a stochastic microscopic driving model. With this
model, the action of the vehicle might be various even
given the same traffic state as input. Several studies have
tried to build such a model by adding simple noise (e.g.,
Gaussian noise) to existing deterministic models. For
example, the output of the IDM model is added with a
Gaussian noise term in Treiber et al. (21). The modified
IDM model could be written as

at + 1 = fIDM (vt, rt, rrt)+
ffiffiffiffi
Q

p
ja(t), ð6Þ

where Q is the fluctuation strength and ja(t) is the
Gaussian noise. The method of adding Gaussian noise to
an analytic deterministic model has two disadvantages:
the assumption of Gaussian distribution may not reflect
real human stochastic driving behaviors, and the analytic
form will disenable the model to fit the changing driving
behavior.

To release the unrealistic assumption of the Gaussian
distribution of randomness, a new model structure is pro-
posed in this paper. Instead of calculating the action, the
model directly outputs the distribution of action and the
final action is sampled accordingly. The model is defined
as

F(ŷt + 1)= fd(xt)= fd(vt, v
l
t, rt, rrt, at), ð7Þ

where F() denotes the distribution function. To achieve
such a model structure, the LSTM is modified with QR
loss and KDE. The main advantage of this model struc-
ture is that no prior assumption is applied on the distri-
bution form. Instead, the distribution is directly learned
and estimated from real driving data. The structure of
the model is described in detail in the following sections.

Model Framework

Figure 1 shows the overall framework of the proposed
QRLSTM model, which contains three components:

Figure 1. The overall model framework.
Note: QRLSTM = quantile regression long short-term memory.
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QRLSTM, KDE, and a sampler. Given the traffic state
xt, the QRLSTMmodel outputs a set of predicted actions
St according to the quantile definition P. Then, these
actions will be used in KDE to estimate the continuous
action distribution F. Finally, action ŷt + 1 is sampled
from the F distribution. The integration of QRLSTM,
KDE, and the sampling process forms a stochastic micro-
scopic driving model. The action ŷt + 1 is used to update
the traffic state xt + 1 at time t+ 1, and the loop runs
repeatedly.

LSTM Structure. A significant trend in driver behavior
modeling is utilizing machine learning techniques to take
advantage of real-world driving data. Neural networks
were introduced to model car-following in Hongfei et al.
(34) and improved by adding human factors by
Khodayari et al. (35). Different learning-based model
structures further improve the modeling performance,
such as the deep neural networks model built by Wang
et al. (32) and the reinforcement learning model built by
Zhu et al. (36). In Zhou et al. (31) and Wang et al. (32),
the RNN model, which can take the historical state into
consideration, shows better performance of the mean
square error (MSE) in speed prediction.

In this paper, the LSTM neural network, a widely
used neuron network structure, is applied as the base
model to calculate the BV action, although the present
framework is applicable for generic neuron network
structures. A simple illustration of LSTM is shown in
Figure 2. The detailed neuron structure can be found in
Hochreiter and Schmidhuber (37). To calculate ŷt + 1,
LSTM considers both the current input xt and the hidden
state ht, which is calculated based on xt�1 and ht�1,
respectively. With this structure, the LSTM can learn
both the corresponding output and the hidden sequence
patterns with sequential training data.

QRLSTM Structure. Owing to the randomness and error of
human drivers, the action is various even in the same
traffic state. Although the driver behavior is recorded as
state-action pairs in real-world data, there is an action

distribution under a certain traffic state. However, the
LSTM is a deterministic model that outputs one action
given a traffic state. As shown in Figure 3, given traffic
state xt, LSTM outputs the action ŷt + 1. The error is then
calculated for MSE for adjusting model weights.
Training the model with the MSE cost function will
indeed lead the model to estimate the median of actions
in a traffic state, which will lose the stochastic informa-
tion of real-world data.

To capture the stochasticity of driver behaviors,
applying the concept of quantile regression (29) is pro-
posed. As shown in Figure 3, the main differences
between QRLSTM and LSTM are the output forms of
the models and the loss functions used for model train-
ing. Specifically, a QRLSTM model outputs a set of N

actions ŷt + 1, 1, ŷt+ 1, 2:::ŷt+ 1,N . The error is calculated as
the pinball error and used for adjusting the model
weights. By applying the pinball loss as the loss function
of LSTM, the target of training is changed to estimate
action quantiles in a traffic state, instead of the action
median.

The pinball function (38) is designed to calculate the
error of a quantile to the real value. The pinball function
is defined as

Lp, yt
=

p(yt � ŷt, p) if (yt � ŷt, p)ø 0

(p� 1)(yt � ŷt, p) if (yt � ŷt, p)\0

�
, ð8Þ

where 0\p\1 is the quantile probability, yt is the
observed output from data, ŷt, p is the prediction of p�
quantile, and Lp, yt

is the loss of the predicted p� quantile
for yt. The loss of the QRLSTM model to estimate the
p� quantile is then defined as

Lp =
1

N

XN + 1

t = 2

Lp, yt
, ð9Þ

where N is the total number of yt.
Then, QRLSTM is designed to calculate an action

matrix corresponding to a set of quantile probabilities,
p 2 P. P= f 1

jpj�1
, 2
jPj�1

, :::, 1� 1
jPj�1
g, where jPj is the

length of P, that is, the number of quantile probabilities
p. The loss function of the QRLSTM model is set as

L=
1

N jPj
XN + 1

t= 2

X
8p2P

Lp, yt
: ð10Þ

By training with real-world data, the action set will
converge to the action quantiles.

KDE and Sampler. Given a traffic state xt, QRLSTM pre-
dicts a jPj3 1 quantile set St = fyt, p1

, yt, p2
, :::, yt, pjPj g. To

obtain a continuous prediction distribution, KDE (30) is
applied. As a classic non-parametric estimation method,

Figure 2. Illustration of the LSTM schema.
Note: LSTM = long short-term memory.
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KDE does not require a prior assumption of distribution
form, which is suitable for modeling the driver behaviors.
The KDE estimation of St is calculated by

f (ŷt)=
1

BjPj
X
8p2P

K(
ŷt, p � yt

B
), ð11Þ

where B.0 is the bandwidth and K is a kernel function.
The sampler will then generate one random variate

from F as the final output of the QRLSTM model. The
sampling method here is the rejection sampling method
(39, 40) with two steps: first, obtain a sample y from the
reference Gaussian distribution with density g and a sam-
ple u from the uniform distribution over the unit interval.
Second, accept y as a sample if u\ f (y)

g(y). Otherwise reject
the value of y and return to the first step.

Model Training

This paper focuses on one of the most common driver
behaviors, car-following behavior, to demonstrate the
proposed model. To capture human driving patterns, the
QRLSTM model is trained with real driving data from a
naturalistic driving study. In real traffic environments,
different types of drivers have diverse driving behavior
styles, therefore, different models are trained for differ-
ent drivers to capture each driver’s behaviors.

Data Description

NDD from the SPMD project (33) was adopted to train
and test the proposed model. With 2,842 participating
vehicles, the SPMD project collected NDD of over 34.9
million miles in Ann Arbor, Michigan. The data from 86
vehicles equipped with data acquisition systems were
used, including MobileEye cameras that capture vehicle
trajectory data (e.g., position, speed, etc.) of the vehicle
and its surrounding traffic (e.g., leading vehicles in the
same and adjacent lanes) with a frequency of 10Hz. To

obtain data in car-following scenarios, the following fil-
tering criteria are applied:

� Road type is highway.
� Speed is larger than 20m/s (72 km/h)
� A leading vehicle is identified by the data acquisi-

tion system.

Finally, a total number of 24,816 trajectories are
extracted with a total travel time of 1,403,955 s (around
390h). Each trajectory lasts for 1 to 1,768 s randomly.

Model Settings

In the car-following scenario, the traffic state x includes
the velocity of the BV v, the velocity of the leading vehi-
cle vl, range between the BV and the AV r, and range
rate rr. The action is the acceleration of the BV a. The
memory time of the LSTM is set as 10, that is, the input
of the model is the traffic states from the previous
1 s, namely, xt = fvt�9, vt�8:::vt; vl

t�9, v
l
t�8:::v

l
t; rt�9, rt�8:::rt;

rrt�9, rrt�8:::rrtg. The QRLSTM model has three hidden
layers with 32 LSTM neurons. The quantile probability P is
set as P= f0:05, 0:10:::0:95g. The bandwidth B in KDE is
0.75, and K is the Gaussian kernel. This model setting is
implemented on all QRLSTMmodels in this paper.

Model Training

Although there are data from 86 drivers available from
SPMD, not all of them have enough data to train a
QRLSTM model. The total driving time of each driver is
shown in Figure 4. There is a large variance in travel time
among different drivers. To confirm the required data for
the training process, the QRLSTM model is trained with
0.01%, 0.05%, 0.1%, 0.5%, 1%, 10%, 25%, 50%, and
70% of all available data, respectively, to help investigate
how the validation error of the model changes along with
the data size. To calculate the pinball loss as the valida-
tion error, 5% of all available data are randomly sampled

Figure 3. Differences between LSTM and QRLSTM.
Note: LSTM = long short-term memory; QRLSTM = quantile regression LSTM.
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as validation data. As shown in Figure 5, the validation
error drops quickly as the size of the training data grows.
The decreasing trend slows down when 0.5% of total
data are used in the training, which accounts for about
7,019 s (about 2 h) driving time. Therefore, 2 h is set as
the threshold of necessary data size, and 66 drivers satis-
fying the condition are modeled individually.

The training results of the obtained 66 QRLSTM
models are shown in Figure 6. The average validation
loss of individual models is 3.65. The blue dash line
stands for the validation loss of the mixed model trained
with data of all drivers. Compared with the validation
loss of the mixed model, only six individual driver mod-
els converge to a higher loss; that is, 90.91% models out-
perform the mixed model. The underperformance of the
mixed driver against individual models is owed to vari-
ous driving styles and habits of different drivers.

Simulation Experiments

Experiments Setup

To verify the performance of the proposed method,
simulation experiments are designed and conducted with
Python 3.7, in a workstation equipped with Intel i7-
10700K CPU and 16GB RAM. As only car-following
behavior is considered, a 3-mile single-lane highway is
built. The traffic demand varies from 500 to 2,000 vehi-
cles/hour in different experiments. The experiment lasts
for 1 h and the simulation resolution is 10Hz. The work-
flow of the simulation is shown in Figure 7.

When the simulation starts, the traffic initializer gener-
ates the first two vehicles in the network, by randomly
sampling the speed of the leading vehicle vl

0, range r0, and
the speed of the following vehicle v0 from the SPMD, and

then calculating the corresponding range rate rr0. It forms
the traffic state at time step 0, that is, x0 = vl

0, v0, r0, rr0.
As the LSTM model structure needs the traffic state of
the last 10 time steps as the input, the IDM is used to gen-
erate the traffic state of the following 9 time steps, to
obtain the traffic state of the first 10 time steps.

After the initialization, given traffic state at time t for
each vehicle model, st = xt�9, xt�8:::xt, the vehicle model
predicts its action at. Then with action at, the state upda-
ter calculates the traffic state for time t + 1 in the
sequence of vehicle positions. The vehicle generator deci-
des whether a new vehicle should be generated and join
the traffic flow. The decision is made by binomial sam-
pling with the probability calculated according to current
traffic demand. If a new vehicle is generated, a trained
driver model from the 86 drivers will be randomly
assigned to the new vehicle according to the travel time
distribution as shown in Figure 4.

Results and Discussion

As discussed in the introduction, to act as BVs in AV
testing scenarios, the driver model should interact with

Figure 4. Distribution of total travel time of 86 drivers.

Figure 5. Validation error versus size of training data.

Figure 6. Validation loss.
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the AV, which is already satisfied with the QRLSTM
structure and the simulation workflow. Another require-
ment is that the model should be consistent with stochas-
tic human driving behaviors to construct a realistic
driving environment. Therefore, performances on both
trajectory level and traffic level need to be examined to
see whether the vehicle trajectories generated from the
proposed model match the human drivers in the NDD.
For comparison, the model proposed by Treiber et al.
(21) is replicated as the baseline, which is an extension of
the commonly used IDM by adding Gaussian noise to
the driver’s acceleration. The model is defined in
Equations 3 and 4 and the model parameters are also
calibrated with the SPMD dataset for a fair comparison,
shown in Table 1.

Trajectory Reproducing Accuracy. Figure 8 shows a compari-
son at the individual trajectory level among the ground
truth, QRLSTM, and the modified IDM model. The
maximum simulation time is set as 30 s and both models
run a total of 100 trajectories. The figure represents four
examples of the generated continuous action profiles
given the initial condition (i.e., traffic states for the first
second). The red, green, and blue lines stand for the real
vehicle action profile obtained from the NDD, the pro-
posed QRLSTM model, and the modified IDM model,
respectively. In each subfigure, the acceleration and
speed profiles of the same trajectory are represented. The
figure shows a similar ability of two models to capture

the behavior trend of human drivers. To quantitatively
compare the trajectory-reproducing ability of two mod-
els, the MSE of acceleration and speed are calculated.
The MSEs of the acceleration of QRLSTM and IDM
are 0.0501 and 0.0619, respectively. The MSEs of the
speed of QRLSTM and IDM are 3.4992 and 4.2518,
respectively. The statistical comparison indicates that the
proposed QRLSTM outperforms IDM in both accelera-
tion and velocity.

Traffic Parameters Comparison. To compare the driving
environment generated by the proposed model and the
real driving environment, the distributions of speed,
range, and time headway (THW) are selected as measure-
ments to describe the traffic flow. Simulations described
in the section of simulation experiments are conducted
with the proposed QRLSTM and IDM models. A total
of 1,159 km of vehicle trajectories are generated by simu-
lation with QRLSTM, a total of 1,789 km of vehicle tra-
jectories are generated by modified IDM, and 100,000
data points are randomly selected from SPMD to form
the ground truth of distributions. As shown in Figure 9,
the red, green, and blue distributions represent real driv-
ing data from SPMD, trajectories from the proposed
QRLSTM model, and the modified IDM, respectively.

Speed and range are two major parameters that can
describe car-following behaviors, which are critical for
AV testing. The upper two subfigures in Figure 9 present
the speed and range distributions, respectively. Both dis-
tributions of QRLSTM are much more similar to the
SPMD than to IDM in the form of distribution and the
median of the parameter. For speed distributions, IDM
is much more concentrated than QRLSTM and the
ground truth, indicating that the vehicles controlled by
IDM have a similar driving pattern with each other. In
the meantime, the speed distribution of QRLSTM
demonstrates stochastic driving behaviors. For range dis-
tributions, the median range of IDM is much greater
than that of QRLSTM and the ground truth, indicating
a more conservative driving style. Furthermore, distribu-
tions of THW are also compared, which is critical for the

Figure 7. Workflow of mixed driver simulation experiment.

Table 1. Parameters of the Modified IDM

Parameter Value

v0 Desired velocities 34.99 m/s
s0 Minimum gap 1.70 m
a Acceleration 1.5 m/s2

b Comfortable deceleration 0.66 m/s2

T Desired time headway 0.73 s
Q Fluctuation strength 0.001 m2/s3

Note: IDM = intelligent driving model.

Liu et al 7



safety test of AVs. As shown in the lower figure in
Figure 9, the THW distribution of the QRLSTM model
can also better capture the trend of the real-world driv-
ing environment than IDM.

To compare the performance, cross-entropy is intro-
duced as a numerical measurement of the similarity
between two distributions. The cross-entropy of distribu-
tion q relative to distribution p within the same sample
space X is defined as follows:

H(p, q)= �
X
x2X

p(x)logq(x): ð12Þ

The smaller the cross-entropy is, the more similar the
two distributions are. As shown in Table 2, the cross-
entropies of all three distributions of the QRLSTM
model and NDD are significantly smaller than those of
the modified IDM and NDD. It means that the distribu-
tions of speed, range, and THW of the QRLSTM model

Figure 8. Four trajectory reproducing examples.
Note: QRLSTM = quantile regression long short-term memory; IDM = intelligent driving model.
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are more similar to real-world distributions. Therefore,
the proposed QRLSTM model outperforms IDM in gen-
erating a more realistic traffic environment.

Conclusion and Further Research

This paper has proposed a learning-based stochastic
driving model structure for generating a realistic driving
environment for AV testing and evaluation. Starting
from the well-studied LSTM model structure, the model
introduces stochasticity from the QR-based loss function
without any assumption on the distribution of human
driver behavior. The model is trained with real driving
data from SPMD and compared with a modified IDM
model, showing its superiority over traditional car-
following models such as IDM. A microscopic

comparison between individual trajectories shows that
the proposed model is able to capture frequent variations
of human driving. Moreover, a comparison at the
macroscopic level shows that the speed, range, and
THW distributions of the proposed model match the
NDD distributions well. The results indicate that the
traffic environment generated by the proposed model
can reflect human driving behaviors.

This study has several limitations. First, this model is
only applied to the car-following scenario in this paper
and needs to be extended to scenarios that include lateral
vehicle maneuvers such as lane changing and cut-in,
where the interactions between AVs and BVs are more
complex. Second, as the crash and near-crash scenarios
are of great value for AV testing, whether the generated
traffic environment can conduct these critical scenarios is
another important feature in the naturalistic driving
environment model. Third, how to integrate physical
knowledge into the learning methods deserves more
investigation. Recently, the concept of physics regular-
ized machine learning has been proposed for macro-
scopic traffic flow modeling (41, 42), which is also a
promising direction for microscopic behavior modeling.
By introducing physical knowledge of analytical models
like IDM and Gipps’ model, the learning-based model
might facilitate a fast training process, accuracy model-
ing, and convenient implementation.

Acknowledgments

The authors thank the U.S. Department of Transportation
(U.S. DOT) Region 5 University Transportation Center:
Center for Connected and Automated Transportation (CCAT)
of the University of Michigan for funding the research.

Author Contributions

The authors confirm contribution to the paper as follows: study
conception and design: Lin Liu, Henry X. Liu, Yiheng Feng,
Shuo Feng, Xichan Zhu; data collection: Yiheng Feng, Shuo
Feng; analysis and interpretation of results: Lin Liu; draft
manuscript preparation: Lin Liu, Shuo Feng, Yiheng Feng,
Henry X. Liu. All authors reviewed the results and approved
the final version of the manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: The U.S. Department of Transportation (U.S. DOT)
Region 5 University Transportation Center: Center for

Figure 9. Traffic parameter comparisons between QRLSTM,
IDM, and NDD.
Note: QRLSTM = quantile regression long short-term memory;

IDM = intelligent driving model; NDD = naturalistic driving data;

THW = time headway.

Table 2. Cross Entropy of QRLSTM and IDM with NDD

Model Speed Range THW

QRLSTM and NDD 5.86 1.65 11.23
IDM and NDD 10.99 2.38 33.27
NDD and NDD 5.76 1.57 8.26

Note: QRLSTM = quantile regression long short-term memory;

IDM = intelligent driving model; NDD = naturalistic driving data; THW =

time headway.

Liu et al 9



Connected and Automated Transportation (CCAT) of the
University of Michigan funded the research.

ORCID iDs

Shuo Feng https://orcid.org/0000-0002-2117-4427
Yiheng Feng https://orcid.org/0000-0001-5656-3222

Henry X. Liu https://orcid.org/0000-0002-3685-9920

References

1. Kalra, N., and S. M. Paddock. Driving to Safety: How

Many Miles of Driving Would It Take to Demonstrate

Autonomous Vehicle Reliability? Transportation Research

Part A: Policy and Practice, Vol. 94, 2016, pp. 182–193.
2. Li, L., X. Wang, K. Wang, Y. Lin, J. Xin, L. Chen, L. Xu,

B. Tian, Y. Ai, J. Wang, and D. Cao. Parallel Testing of

Vehicle Intelligence Via Virtual-Real Interaction. Science

Robotics, Vol. 4, No. 28, 2019, Article eaaw4106.
3. Li, L., N. Zheng, and F.-Y. Wang. A Theoretical Founda-

tion of Intelligence Testing and Its Application for Intelligent

Vehicles. IEEE Transactions on Intelligent Transportation Sys-

tems, 2020, pp. 1–10.
4. Koren, M., S. Alsaif, R. Lee, and M. J. Kochenderfer.

Adaptive Stress Testing for Autonomous Vehicles. Proc.,

2018 IEEE Intelligent Vehicles Symposium (IV). IEEE,

2018, pp. 1–7.
5. Koren, M., A. Corso, and M. J. Kochenderfer. The Adap-

tive Stress Testing Formulation. arXiv Preprint

arXiv:2004.04293, 2020.
6. Corso, A., P. Du, K. Driggs-Campbell, and M. J. Kochen-

derfer. Adaptive Stress Testing with Reward Augmenta-

tion for Autonomous Vehicle Validation. Proc., 2019

IEEE Intelligent Transportation Systems Conference

(ITSC). IEEE, 2019, pp. 163–168.
7. Weng, B., L. Capito, U. Ozguner, and K. Redmill.

Towards Guaranteed Safety Assurance of Automated

Driving Systems with Scenario Sampling: An Invariant Set

Perspective (Extended Version). arXiv Preprint

arXiv:2104.09595, 2021.
8. Thorn, E., S. C. Kimmel, M. Chaka, B. A. Hamilton, et

al. A Framework for Automated Driving System Testable

Cases and Scenarios. Technical Report. United States

Department of Transportation, National Highway Traffic

Safety Administration, Washington, D.C., 2018.
9. Feng, S., Y. Feng, C. Yu, Y. Zhang, and H. X. Liu. Test-

ing Scenario Library Generation for Connected and Auto-

mated Vehicles, Part I: Methodology. IEEE Transactions

on Intelligent Transportation Systems, Vol. 22, No. 3, 2020,

pp. 1573–1582.
10. Feng, S., Y. Feng, H. Sun, S. Bao, Y. Zhang, and H. X.

Liu. Testing Scenario Library Generation for Connected

and Automated Vehicles, Part II: Case Studies. IEEE

Transactions on Intelligent Transportation Systems, 2020,

pp. 1–13.
11. Feng, S., Y. Feng, H. Sun, Y. Zhang, and H. X. Liu. Test-

ing Scenario Library Generation for Connected and Auto-

mated Vehicles: An Adaptive Framework. IEEE Transactions

on Intelligent Transportation Systems, 2020, pp. 1–10. https://

doi.org/10.1109/TITS.2020.3023668.
12. Feng, S., Y. Feng, X. Yan, S. Shen, S. Xu, and H. X. Liu.

Safety Assessment of Highly Automated Driving Systems

in Test Tracks: A New Framework. Accident Analysis &

Prevention, Vol. 144, 2020, Article 105664.
13. Feng, S., X. Yan, H. Sun, Y. Feng, and H. X. Liu. Intelli-

gent Driving Intelligence Test for Autonomous Vehicles

with Naturalistic and Adversarial Environment. Nature

Communications, Vol. 12, 2021, p. 748.
14. Moon, S., I. Moon, and K. Yi. Design, Tuning, and Eva-

luation of a Full-Range Adaptive Cruise Control System

with Collision Avoidance. Control Engineering Practice,

Vol. 17, No. 4, 2009, pp. 442–455.
15. Euro, N. European New Car Assessment Programme (Euro

NCAP)—Test Protocol—AEB VRU Systems Version 3.0.4.

Technical Report. 2021.
16. Arcidiacono, A. ADAS Virtual Validation: ACC and AEB

Case Study with IPG CarMaker. PhD thesis. Politecnico di

Torino, 2018.
17. Li, W., C. Pan, R. Zhang, J. Ren, Y. Ma, J. Fang, F. Yan,

Q. Geng, X. Huang, H. Gong, et al. AADS: Augmented

Autonomous Driving Simulation Using Data-Driven Algo-

rithms. Science Robotics, Vol. 4, No. 28, 2019, Article

eaaw0863.
18. Newell, G. F. A Simplified Car-Following Theory: A

Lower Order Model. Transportation Research Part B:

Methodological, Vol. 36, No. 3, 2002, pp. 195–205.
19. Treiber, M., A. Hennecke, and D. Helbing. Congested

Traffic States in Empirical Observations and Microscopic

Simulations. Physical Review E, Vol. 62, No. 2, 2000, p. 1805.
20. Gipps, P. G. A Behavioural Car-Following Model for

Computer Simulation. Transportation Research Part B:

Methodological, Vol. 15, No. 2, 1981, pp. 105–111.
21. Treiber, M., A. Kesting, and D. Helbing. Understanding

Widely Scattered Traffic Flows, the Capacity Drop, and

Platoons as Effects of Variance-Driven Time Gaps. Physi-

cal Review E, Vol. 74, No. 1, 2006, Article 016123.
22. Laval, J. A., C. S. Toth, and Y. Zhou. A Parsimonious

Model for the Formation of Oscillations in Car-Following

Models. Transportation Research Part B: Methodological,

Vol. 70, 2014, pp. 228–238.
23. Bando, M., K. Hasebe, A. Nakayama, A. Shibata, and Y.

Sugiyama. Dynamical Model of Traffic Congestion and

Numerical Simulation. Physical Review E, Vol. 51, No. 2,

1995, p. 1035.
24. Jiang, R., Q. Wu, and Z. Zhu. Full Velocity Difference

Model for a Car-Following Theory. Physical Review E,

Vol. 64, No. 1, 2001, Article 017101.
25. Newell, G. F. Instability in Dense Highway Traffic: A

Review. Proc., 2nd International Symposium on the Theory

of Traffic Flow, London, 1963.
26. Yang, H.-H. and H. Peng. Development of An Errorable

Car-Following Driver Model. Vehicle System Dynamics,

Vol. 48, No. 6, 2010, pp. 751–773.
27. Li, L. and X. M. Chen. Vehicle Headway Modeling and Its

Inferences in Macroscopic/Microscopic Traffic Flow The-

ory: A Survey. Transportation Research Part C: Emerging

Technologies, Vol. 76, 2017, pp. 170–188.

10 Transportation Research Record 00(0)

https://orcid.org/0000-0002-2117-4427
https://orcid.org/0000-0001-5656-3222
https://orcid.org/0000-0002-3685-9920
https://doi.org/10.1109/TITS.2020.3023668
https://doi.org/10.1109/TITS.2020.3023668


28. Yan, X., S. Feng, H. Sun, and H. X. Liu. Distributionally
Consistent Simulation of Naturalistic Driving Environ-
ment for Autonomous Vehicle Testing. arXiv Preprint

arXiv:2101.02828, 2021.
29. Koenker, R., and K. F. Hallock. Quantile Regression.

Journal of Economic Perspectives, Vol. 15, No. 4, 2001,
pp. 143–156.

30. Terrell, G. R., and D. W. Scott. Variable Kernel Density
Estimation. The Annals of Statistics, Vol. 20, No. 3, 1992,
pp. 1236–1265.

31. Zhou, M., X. Qu, and X. Li. A Recurrent Neural Network
Based Microscopic Car Following Model to Predict Traffic
Oscillation. Transportation Research Part C: Emerging

Technologies, Vol. 84, 2017, pp. 245–264.
32. Wang, X., R. Jiang, L. Li, Y.-L. Lin, and F.-Y. Wang.

Long Memory Is Important: A Test Study on Deep-Learn-
ing Based Car-Following Model. Physica A: Statistical

Mechanics and its Applications, Vol. 514, 2019, pp. 786–795.
33. Bezzina, D., and J. Sayer. Safety Pilot Model Deployment:

Test Conductor Team Report. Report No. DOT HS 812
171. National Highway Traffic Safety Administration,
Washington, D.C., 2014.

34. Hongfei, J., J. Zhicai, and N. Anning. Develop a Car-Fol-
lowing Model Using Data Collected By ‘‘Five-Wheel Sys-
tem.’’ Proc., 2003 IEEE International Conference on

Intelligent Transportation Systems, Shanghai, Vol. 1. IEEE,
Shanghai, China, 2003, pp. 346–351.

35. Khodayari, A., A. Ghaffari, R. Kazemi, and R. Braun-
stingl. A Modified Car-Following Model Based on a Neural

Network Model of the Human Driver Effects. IEEE Trans-

actions on Systems, Man, and Cybernetics-Part A: Systems

and Humans, Vol. 42, No. 6, 2012, pp. 1440–1449.
36. Zhu, M., X. Wang, and Y. Wang. Human-Like Autono-

mous Car-Following Model with Deep Reinforcement

Learning. Transportation Research Part C: Emerging Tech-

nologies, Vol. 97, 2018, pp. 348–368.
37. Hochreiter, S. and J. Schmidhuber. Long Short-Term

Memory. Neural Computation, Vol. 9, No. 8, 1997,

pp. 1735–1780.
38. Koenker, R., and G. Bassett Jr. Regression Quantiles.

Econometrica: Journal of the Econometric Society, Vol. 46,

No. 1, 1978, pp. 33–50.
39. Radford, N. Slice Sampling. The Annals of Statistics, Vol.

31, 2003, pp. 705–767.

40. Wells, M. T., G. Casella, and C. P. Robert. Generalized

Accept-Reject Sampling Schemes. In A festschrift for her-

man rubin (A. DasGupta, ed.), Institute of Mathematical

Statistics, 2004, pp. 342–347.
41. Yuan, Y., X. T. Yang, Z. Zhang, and S. Zhe. Macroscopic

Traffic Flow Modeling with Physics Regularized Gaussian

Process: A New Insight into Machine Learning Applica-

tions. arXiv Preprint arXiv:2002.02374, 2020.
42. Shi, R., Z. Mo, K. Huang, X. Di, and Q. Du. Physics-

Informed Deep Learning for Traffic State Estimation.

arXiv preprint arXiv:2101.06580, 2021.

The views presented in this paper are those of the authors alone.

Liu et al 11


