
Research Article

Transportation Research Record
1–14
� National Academy of Sciences:
Transportation Research Board 2021
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/03611981211018697
journals.sagepub.com/home/trr

Corner Case Generation and Analysis for
Safety Assessment of Autonomous
Vehicles

Haowei Sun1 , Shuo Feng1 , Xintao Yan1 , and Henry X. Liu1

Abstract
Testing and evaluation is a crucial step in the development and deployment of connected and automated vehicles (CAVs). To
comprehensively evaluate the performance of CAVs, it is necessary to test the CAVs in safety-critical scenarios, which rarely
happen in a naturalistic driving environment. Therefore, how to purposely and systematically generate these corner cases
becomes an important problem. Most existing studies focus on generating adversarial examples for perception systems of
CAVs, whereas limited efforts have been put into decision-making systems, which is the highlight of this paper. As the CAVs
need to interact with numerous background vehicles (BVs) for a long duration, variables that define the corner cases are usu-
ally high-dimensional, which makes the generation a challenging problem. In this paper, a unified framework is proposed to
generate corner cases for decision-making systems. To address the challenge brought by high dimensionality, the driving envi-
ronment is formulated based on the Markov decision process, and the deep reinforcement learning techniques are applied to
learn the behavior policy of BVs. With the learned policy, BVs behave and interact with the CAVs more aggressively, resulting
in more corner cases. To further analyze the generated corner cases, the techniques of feature extraction and clustering are
utilized. By selecting representative cases of each cluster and outliers, the valuable corner cases can be identified from all gen-
erated corner cases. Simulation results of a highway driving environment show that the proposed methods can effectively
generate and identify the valuable corner cases.

Testing and evaluation of connected and automated
vehicles (CAVs) have been studied for years (1–11). To
comprehensively evaluate the performance of CAVs, it is
crucial to test the CAVs in different scenarios, especially
the safety-critical ones. In a naturalistic driving environ-
ment (NDE), however, safety-critical scenarios rarely
happen, so it is very time-consuming and inefficient to
collect corner cases from either on-road test or simula-
tion test of NDE (12, 13). Therefore, how to purposely
and systematically generate corner cases becomes an
important problem.

Most existing studies for corner case generation focus
on the perception systems of CAVs. Utilizing the meth-
ods from the domain of computer vision, researchers aim
to generate adversarial examples, which can fool the per-
ception system of CAVs, such as misleading the object
classification results (14–16) and hiding pedestrians from
the perception results (17). Consequently, disturbed
CAVs may miss safety-critical information and encoun-
ter dangerous situations.

The decision-making system is also essential in keep-
ing the safety driving of CAVs. Even though the

perception system is perfect in the sense that every object
of interest can be correctly observed and recognized, the
failure of the decision-making system can still cause
severe accidents. However, how to generate corner cases
for decision-making systems still lacks investigation.
Toward solving this issue, several methods have been
recently proposed to generate corner cases of simple sce-
narios (e.g., cross-walking) using adversarial machine
learning techniques (18). For the real-world traffic envi-
ronment (e.g., highway driving environment), however,
CAVs need to interact with multiple background vehicles
(BVs) for a long duration, so the variables that define
the corner cases will be high-dimensional. To the best of
our knowledge, no existing method can handle such a
high dimensionality for corner case generation.

In this paper, a unified framework is proposed for the
high-dimensional corner case generation problem. To

1University of Michigan, Ann Arbor, MI

Corresponding Author:

Shuo Feng, fshuo@umich.edu

us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/03611981211018697
https://journals.sagepub.com/home/trr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F03611981211018697&domain=pdf&date_stamp=2021-07-02


address the challenge brought by high dimensionality,
the Markov decision process (MDP) is introduced to for-
mulate the traffic environment, which can simplify the
temporal dependency between different snapshots of the
simulation. Compared with existing driving models com-
monly used in prevailed simulation platforms, such as
the intelligent driver model (IDM) (19), the ‘‘minimizing
overall braking induced by lane change’’ (MOBIL) model
(20), and the Krauss model (21), the MDP-based driving
model can incorporate the behavior randomness of the
real-world datasets, which makes the simulation more
realistic and reliable. Moreover, with the reinforcement
learning method, the simulation obtained can generate
much more corner cases purposely, comparing with the
NDE. To further simplify the spatial dependency, the
BVs of the environment are assumed to make decisions
simultaneously and independently during each time step,
which is commonly accepted in existing studies (22, 23).
Using naturalistic driving data (NDD), the empirical dis-
tributions of BV’s actions can be obtained for every
state. By sampling actions of BVs from the distribu-
tions at each time step, the NDE can be generated (12,
13). Based on this formulation, the corner case genera-
tion problem of the driving environment is equivalent
to optimizing the behavior policy of BVs to improve
the probability of corner cases. To achieve this optimi-
zation objective, deep reinforcement learning (DRL)
(24) techniques are utilized to learn the optimal beha-
vior policy of BVs. With the learned policy, the BVs
behave more aggressively when interacting with CAVs,
and therefore systematically generate corner cases for a
complex driving environment, such as highway driving
environment.

Owing to the diversity of corner cases, the generated
cases can usually be divided into several clusters as well
as outliers that do not belong to any specific cluster.
Therefore, typical corner cases from each cluster and the
outliers can represent the internal property of the gener-
ated corner cases, which are referred to as ‘‘valuable’’
corner cases hereafter. Given the generated corner cases,
it is crucial to identify the valuable corner cases, which
are usually more valuable for the evaluation and devel-
opment of CAVs. To achieve this goal, feature extraction
and clustering techniques are introduced. As the gener-
ated corner cases could be high-dimensional, principal
component analysis (PCA) (25) is utilized to reduce the
dimension of corner cases and extract the principal fea-
tures. For the extracted features, clustering methods are
applied to identify different clusters of corner cases as
well as specific outliers. Consequently, valuable corner
cases can be identified.

To validate the proposed method, experiments in a
highway driving environment are simulated. To generate
the corner cases, one of the commonly used DRL

methods, the dueling deep Q network (DQN) (24), is
applied to learn the optimal behavior policy of BVs.
After the feature extraction by PCA, K-means (26) and
the ‘‘density-based spatial clustering of applications with
noise’’ (DBSCAN) algorithms (27) are utilized to analyze
the corner cases. The experiment results show that the
proposed method can effectively generate and analyze
valuable corner cases.

The rest of the paper is organized as follows. First,
the related works about corner case generation are intro-
duced. Second, we propose a new unified framework for
corner case generation using MDP and DRL techniques.
Third, feature extraction and clustering techniques are
applied for corner case analysis. After that, two case
studies are provided to validate the proposed corner case
generation and analysis methods. Finally, we conclude
and discuss future works.

Related Works

In the CAV testing and evaluation domain, the ability to
test the performance of CAVs under different scenarios
is crucial. Therefore, researchers in this field have been
working to find efficient and reasonable methods of gen-
erating corner cases for both CAV perception testing and
decision-making testing.

Corner Case Generation for Vehicle Perception

In the CAV perception field, one popular research area
in generating corner cases is the adversarial examples
generation method. Many autonomous vehicle manufac-
turers such as Tesla and Waymo have been leveraging
neural networks for perception purposes. However, with
the rapid development of deep learning and neural net-
work training, many researchers have found that with a
small perturbation on the training examples, machine
learning systems can be fooled (28–30). These contami-
nated examples are defined as adversarial examples. For
example, Szegedy et al. (31) proposed a method to gener-
ate gradient-based optimization adversary examples. By
minimizing the difference between adversarial examples
and normal training examples while modifying the pre-
dicted label from the machine learning system, the pro-
posed algorithm can automatically generate adversarial
examples for specific neural networks.

With regard to autonomous vehicle testing, there are
also many approaches to interfering with vehicle percep-
tion, where most attention is focused on attacking the
object detection system. Xie et al. (17) proposed an
attack algorithm of object recognition system by remov-
ing the pedestrian segmentation. Kurakin et al. (32)
showed that perturbation in the physical world instead
of in the image perception area can lead to fatal errors of

2 Transportation Research Record 00(0)



the CAV perception system. Furthermore, Evtimov et al.
(15) and Eykholt et al. (16) designed a real-world stop
sign with domain knowledge from adversarial examples
and successfully let the object recognition system classify
it as a speed limit sign. Several works such as the study
by Lu et al. (33, 34) showed that the adversarial stop
signs in the physical world will not fool the modern CAV
perception system as the CAV is continuously moving
and detecting the object at each time step. However,
Chen et al. (14) showed that the perception system of
CAV is still vulnerable to specific adversarial examples.

Corner Case Generation for Vehicle Decision-Making

Researchers have also been focusing on generating cor-
ner cases for CAV decision systems. Ma and Peng (35)
proposed a worst-case evaluation method, which formu-
lated the disturbance generator and the controller as two
players in a game, and generated corner cases by finding
the worst inputs from steering controllers and integrated
chassis controllers. However, the proposed method
focuses on a single vehicle, without considering the influ-
ence of other traffic participants, which is crucial in eval-
uating and testing CAVs.

To generate cases with multiple traffic participants,
researchers introduced the risky index and the probabil-
istic model of the environment to help generate critical
cases. For example, Zhao et al. (36, 37) introduced
importance sampling techniques and generated testing
cases for car-following and lane-changing maneuvers. To
solve the overvalue problem of worst cases, Feng et al.
(38–41) proposed a new definition of scenario criticality,
which can be computed as a combination of maneuver
challenge and exposure frequency, and generated critical
cases using optimization methods and reinforcement
learning techniques on various environment settings,
including cut-in scenarios and car-following scenarios.
To further address the challenge brought by the high
dimensionality of complex environments (e.g., highway
driving), Feng et al. (12) proposed a framework of gener-
ating a naturalistic and adversarial driving environment
by adding sparse but adversarial adjustments to the
NDE. Akagi et al. (42) use a self-defined risky index and
NDD to sample critical cut-in scenarios. O’Kelly et al.
(43) utilized neural network and imitation learning to
calibrate the naturalistic driving model from the next-
generation simulation data, and then chose a highway
with six vehicles to generate testing cases. In summary,
these critical case generation methods consider both the
risky index and the naturalistic probability in the gener-
ating process. Although the critical cases are significant
for the systematic evaluation of CAVs, the corner cases
are also important especially for the vulnerability identi-
fication of CAVs, which is complementary to the critical

cases. How to generate and identify corner cases with
high coverage, variability, and representativeness remain
open questions.

To deal with corner cases with long time duration,
researchers introduced MDP and reinforcement learning
techniques to reduce the temporal complexity. Ding et al.
(18) modeled the environment as the combination of
‘‘blocks’’ and used the REINFORCE algorithm to gener-
ate corner cases. However, the modeling method can
only be used in a simplified environment and cannot deal
with multiple traffic participants. Koren et al. (4) pro-
posed the adaptive stress testing method, which intro-
duced Monte Carlo tree search and DRL to solve the
pedestrian-crossing problem. In this study, however, it
also only involves one autonomous vehicle and one or
two pedestrians. Karunakaran et al. (44) utilized DQN
to generate corner cases involving one pedestrian and
one autonomous vehicle. However, the action chosen for
the pedestrian is very simple, and the risk estimation only
concentrates on the responsibility-sensitive safety metric
(45), which may become misleading in predicting the
crash probability.

To address the limitations of the existing decision-
making corner case generation method, this paper pro-
poses a corner case generation method over the decision
domain. In most scenarios, the corner case is a sequence
of snapshots of the environment with multiple traffic
participants. Therefore, the corner cases in real-world
traffic environments always have high dimensions.
However, existing decision-making corner case genera-
tion methods are only validated under simplified scenar-
ios and cannot process highly complex environments. In
this paper, we propose a corner case generation method
for high-dimensional and complex traffic simulations. By
modeling the environment with MDP, the complexity of
the temporal domain is simplified. Moreover, we model
the scenario as interactions between multiple traffic par-
ticipants, which can handle the challenge of dimensional-
ity in space.

Corner Case Generation

In this section, we propose a unified framework for cor-
ner case generation based on MDP formulation and
DRL techniques. To address the challenge brought by
high dimensionality, we formulate the traffic simulation
environment as an MDP. By utilizing the NDD, we build
naturalistic driving models (e.g., car-following and lane-
changing models). In this way, the NDE can be modeled
as the interactions between multiple BVs with naturalistic
driving models. To purposely generate the corner cases,
we formulate the generation problem as an optimization
problem of the driving models of BVs. The goal of the
optimization problem is to improve the probability of

Sun et al 3



crashes. By utilizing the DRL techniques, the optimiza-
tion problem can be solved by learning the behavior pol-
icy of BVs. The learned behavior policy essentially leads
to aggressive driving models of BVs, which can generate
corner cases for the CAV under test.

Problem Formulation

In this paper, the problem formulation is consistent with
(12, 38–41). Let u describe the pre-determined para-
meters of the operational design domains (ODDs), such
as the number of lanes, weather, and so forth. The defi-
nitions of scenario and scene are adopted from Ulbrich
et al. (46). Under specific ODD parameters, a scene
describes the snapshot of the traffic environment, which
includes the states of static elements and dynamic traffic
participants (e.g., pedestrians and vehicles). A scenario
describes the temporal development among a sequence
of scenes. Let X represent the decision variables of the
scenario and s denote the state of the scene. In this
paper, we only consider BVs, and each vehicle has three
parameters to describe the overall state: position p, velo-
city v, and heading angle a. Therefore, the decision vari-
able of one vehicle can be defined as x= fp, v,ag. In
each time step, the vehicle numbers in the CAV’s neigh-
borhood are different, so we define the number of
observed vehicles in time step t as mt. Then, the scene of
time step t can be defined as st = fx(t)1 , x

(t)
2 , � � � , x(t)mt

g, and
the scenario can be defined as:

X = fs0, s1, � � � , sng: ð1Þ

To simplify the problem, we model the traffic environ-
ment as an MDP. Given a specific state st, the ‘‘agent’’
can represent the BVs in the environment and make a
decision ut (e.g., accelerations). As the ut is only deter-
mined by state st, it can also be written as ut(st).
Therefore, the scenario can be rewritten as follows:

X = fs0, u0, s1, u1, s2, � � � , sng: ð2Þ

Then, we define A as the event of interest (e.g., crash
event). For a given scenario X, we can clearly identify
whether it is the event of interest. Therefore, P(AjX , u) is
known for given X. Under specific ODD, the probability
of the event of interest can be written as follows:

P(Aju)=
X
X2D

P(AjX , u)P(X ju), ð3Þ

where P(X ju) denotes the probability of specific scenario
X given ODD parameter u, and D represents the set of
available scenarios. By using the notation from Equation
2, we can further decompose P(X ju) in a factorized way
as:

P(X ju)=P(s0ju)
Ym�1

k = 0

P(sk + 1juk , sk , u)P(uk jsk , u): ð4Þ

Here P(sk + 1juk , sk , u) is the state transition probabil-
ity, which means the probability of the occurrence of
sk + 1 given state sk and action uk , and P(uk jsk , u) denotes
the probability of choosing action uk at state sk .

In Equation 4, P(s0ju) and P(sk + 1juk , sk , u) are deter-
mined by the environment, and P(AjX ) is determined by
the CAV under test, which cannot be modified.
Therefore, to improve the exposure frequency of corner
cases (P(Aju) in Equation 3), we should modify the
P(uk jsk , u) such that the P(X ju) can be increased for X
where P(AjX )= 1. P(uk jsk , u) denotes the probability of
agent choosing action uk under state sk , so it can be
viewed as a stochastic policy. If the policy can be opti-
mized to improve P(Aju), the corner cases can be gener-
ated more purposely. To achieve this goal, DRL
techniques are utilized to train a new policy as the
replacement of P(uk jsk , u), which will be elaborated in
the next section.

DRL-Based Method

By replacing P(uk jsk , u) with the modified behavior policy
pr(uk jsk , u), we can obtain higher probability of the event
of interest. The new definition is shown in the following
equation:

P(X ju, r)=P(s0ju)
Ym�1

k = 0

P(sk + 1juk , sk , u)pr(uk jsk , u): ð5Þ

The newly defined pr(uk jsk , u) represents a behavior
policy to be learned in the DRL problem. Detailed opti-
mization formulation can be seen in Equation 6:

max
r

P(Aju, r)=
X

X2D
P(AjX , u)P(X ju, r): ð6Þ

The optimization problem can be considered as train-
ing a specific behavior policy in the simulation environ-
ment, which lets BVs aggressively interact with the CAV.
Therefore, given the complexity of the environment,
DRL techniques can have a good performance in solving
the optimization problem. As an unsupervised algorithm,
DRL techniques can learn optimal policy from experi-
ence given specific reward settings. By implementing the
reinforcement learning algorithms and using the deep
neural network (DNN) as the function approximator,
DRL can solve the problem with high complexity and
derive well-behaved policy in aspects of video games
(24), robotics (47), and so forth. Following the ideas of
traditional reinforcement learning, DRL also has three
different approaches: value-based DRL, policy-based
DRL, and actor-critic DRL (24, 48–53). In this paper,

4 Transportation Research Record 00(0)



we mainly use the value-based DRL to solve the optimi-
zation problem.

Value-based DRL, also commonly known as the
DQN, aims at learning the optimal state-action value
function Q(st, ut) by estimating the expected reward of
action ut given state st. Researchers introduce DNN here
to represent the Q function, where the neural network
will accept the state and action information as the input
and return the estimated state–action value. Specifically,
DQN uses a neural network with parameter r to approx-
imate the optimal state–action value function:

Q�r(s, u)= max
p

E
X‘

i= 0

girt + 1jst = s, ut = u,pr

" #
, ð7Þ

where rt denotes the immediate reward received at step t.
Therefore, with the optimal state–action value function,
we can easily derive the optimal policy that can increase
the probability of corner cases. The optimal policy will
be a deterministic policy as follows:

P(utjst)=
1 ut = argmax

u
Q(st, u)

0 otherwise

�
: ð8Þ

By only giving crash events positive reward rA, with
the training process of the DQN agent, the optimal value
function and the optimal policy will bring about a higher
probability of crash events.

To further improve the performance of DRL tech-
niques, dueling network architecture (52) is introduced.
By defining the new definition value function V (s) and
advantage function A(s, u), the dueling network architec-
ture can estimate the value function of the state–action
more precisely. The connection between the dueling net-
work and DQN can be seen as follows:

A(s, u)=Q(s, u)� V (s): ð9Þ

Therefore, two neural networks are introduced to rep-
resent A(s, u) and V (s). These two networks often share
some hidden layers, as shown in Figure 1.

Corner Case Analysis

With the learned behavior policy, many corner cases will
be generated by simulating the interaction between the
agent and the environment. With a detailed understand-
ing of generated corner cases, the evaluation and devel-
opment of CAVs can be more targeted and effective.

Owing to the diversity of corner cases, the generated
cases can usually be divided into several clusters as well
as outliers that do not belong to any specific cluster.
Therefore, typical corner cases from each cluster and the
outliers can represent the internal property of the gener-
ated corner cases, which are referred to as valuable

corner cases. To identify the valuable corner cases, we
need two techniques: feature extraction and clustering.
The long time period and multiple traffic participants
lead to the high dimension of corner cases, which further
bring about difficulty in the analysis. To address the dif-
ficulty, we introduce the feature extraction method to
reduce the dimension and extract key information from
the cases. In this paper, we utilize the PCA algorithm to
reduce the dimension. Moreover, corner cases can usu-
ally be classified into different clusters owing to the
diversity of the generated corner cases. Different types of
cases may differ significantly with regard to frequency.
Some types may occupy the majority of corner cases
whereas other types may become the minority. To keep
the diversity, the majority and minority need to be ana-
lyzed separately. To achieve this goal, the DBSCAN
method is used to separate the majority and minority of
corner cases as two groups. Then, for each group of the
corner cases, the K-means method is utilized to cluster
the corner cases. As unsupervised methods, the
DBSCAN and K-means methods can be applied to clus-
ter generic corner cases without knowing the predefined
labels.

Corner Case Feature Extraction

Corner cases are sequences of continuous snapshots of
traffic environments, which always contain multiple traf-
fic participants. Therefore, corner cases always have high
dimensions, which bring about difficulties in the analysis.
Feature extraction techniques can be utilized to reduce
the dimension of the feature space while keeping essential
information. PCA (25) is one of the most popular feature
extraction methods. By maximizing the variance in every
direction, the PCA method can project data points from
a high-dimensional space to a low-dimensional space and

Figure 1. Dueling network architecture.

Sun et al 5



transform the data points to a new coordinate system.
The first k directions given by PCA are also the direc-
tions on which the largest variance of data projection lies.
Therefore, in most cases, only picking several coordinates
given by PCA will bring about essential information of
the original data. By introducing the PCA algorithm, we
can extract several key features and simplify the analysis
process in the next steps. Additionally, PCA can differ-
entiate and visualize the distance and relatedness between
different populations (i.e., data clusters). Therefore, the
data points after the PCA projection will be more suit-
able for the next-step clustering analysis.

Corner Case Clustering

In the generated corner cases, some normal scenarios
may occupy a large proportion. For example, some
libraries may contain many homogeneous cases (e.g.,
many rear-end collisions). However, the value of normal
scenarios is limited, as the increase in normal corner
cases does not result in new information for CAV perfor-
mance. Instead, we should pay more attention to valu-
able scenarios in the generated corner cases, such as
typical corner cases of a specific corner case cluster, and
the outliers that have significantly different properties
compared with the majority of corner cases. In this
paper, to detect the outliers, we utilize the DBSCAN
method (27), which groups the data points that are
closely packed together. Therefore, the outliers can be
identified as the data points with low density, namely,
the minority of corner cases.

After differentiating the majority and the minority,
further analysis can be applied separately. Owing to the
diversity of the generated corner cases, different cases
have different internal patterns and are always distribu-
ted in different areas of the feature space. Therefore, by
applying the clustering method, corner cases can be clas-
sified as different types. Additionally, some typical cases
can represent many corner cases (in the same cluster). To
automatically classify the type of different data points,
the clustering method is commonly used. In this domain,
the K-means method (26) is among the most popular
algorithms. As a non-parametric unsupervised learning
method, K-means provides the clustering result minimiz-
ing the in-group variance (squared Euclidean distances)
for a given objective cluster number, which can help dif-
ferentiate clusters with different internal properties.

Valuable Corner Case Identification

After corner case clustering, valuable corner case extrac-
tion becomes the next topic. The value of one specific
corner case represents how much it can help in evaluat-
ing CAVs and improving the performance of CAVs.

From this perspective, two different types of cases can be
defined as valuable: typical cases and rare cases. Typical
cases usually represent multiple corner cases from the
same cluster, and rare cases are usually the outliers,
which have distinct properties compared with the major-
ity and rarely happen in the NDE. Correspondingly, two
techniques are utilized to extract valuable corner cases.
First, after data clustering of corner cases, the typical
corner cases can be selected by the distance to the center
of a specific cluster. Second, by outlier detection methods
powered by clustering, rare corner cases with various
properties can be extracted. Then, the identification of
valuable corner cases can be achieved. In this way, the
identified valuable corner cases can well balance the con-
sideration of coverage, variability, and representativeness
of the cases.

Case Study

In this section, we validate our methodology using
experiments in the highway simulation platform. This
section consists of four parts. First, we introduce the
NDD processing and NDD driving models. Second, we
introduce the simulation platform used in the case study.
Third, the proposed corner case generation method is
validated in the simulation platform. Finally, by utilizing
the corner case analysis method, we extract the valuable
corner cases from different experiment settings.

NDD Processing

To build the naturalistic highway driving model, we
implement a data-driven stochastic model from the inte-
grated vehicle-based safety systems dataset (54) at the
University of Michigan, Ann Arbor, Michigan, and the
safety pilot model deployment dataset. By integrating
the forward collision warning, lane departure warning,
lane-change warning, and curve speed warning functions
on passenger cars and heavy trucks, this project aims to
prevent rear-end and other crashes. The project collected
650,000mi of driving data on heavy trucks and
175,000mi of driving data on regular vehicles.

To calibrate the data-driven naturalistic driving model
for the highway environment, we collected data points in
which the velocity of vehicles is between 20 and 40m/s.
As a result, we collected around 3 3 106 data points and
built up the empirical distribution of BV’s action for
every state. By sampling actions from the empirical dis-
tribution, all BVs are essentially controlled by the natur-
alistic driving model, which formulate the NDE.

Simulation Platform

Our simulation platform is based on the open-source
simulation platform HIGHWAY-ENV (55). This

6 Transportation Research Record 00(0)



simulation environment is fully compatible with the
OpenAI gym environment (56), so it can be used to train
the autonomous vehicle planning algorithm.
Additionally, compared with other simulation platforms
such as CARLA and SUMO, the HIGHWAY-ENV
simulation platform is more lightweight and with higher
computational efficiency. In the HIGHWAY-ENV envi-
ronment, the IDM car-following model (19) and
MOBIL model (20) for lane changing are used to pro-
vide continuous traffic flow and reasonable vehicle beha-
viors. However, default vehicle models are deterministic
and cannot perform the naturalistic nature of vehicle
behavior, which is not suitable for the corner case gener-
ation process. To overcome this limitation, we re-design
the simulation environment and add control API to
improve the controllability of BVs, so the BVs can be
controlled by the naturalistic driving model.

Corner Case Generation

We implement the DQN (24) method using PyTorch and
SGD as the optimizer. Detailed experiment hyper-
parameters are listed in Table 1. In the dueling neural
network architecture (52), there are four fully connected
layers, each with 128 units. As is shown in Figure 1, the
dueling network splits into two streams of fully con-
nected layers: the value stream and the advantage
stream. Each stream has two fully-connected layers with
128 units. The final output layer of the state stream and
the value stream are also fully connected. The value
stream has one output and the advantage stream has 33
outputs (pre-defined discrete actions). The value stream
output and the advantage stream output are combined
using Equation 9. During the training process, +1
reward is given when BVs successfully crash into the
CAV, and 21 reward is given when BVs crash into each
other. Otherwise, we give zero reward. The experiments
are implemented on Ubuntu 18.04 LTS with i9-9900k
CPU, RTX 2080 TI GPU, and 64GB of RAM. The
agent was trained for around 100,000 episodes in 4 days
until it reaches the performance limit, and the training
process of the agent can be seen in Figure 2. In the end,

the crash rate in the corner case environment converges
to 0.3.

In the case study, we test one commonly used CAV
model, which is constructed by the IDM car-following
model and MOBIL lane-change model. To better inter-
pret the results, the CARLA simulator (57) is used to
visualize corner cases. We implement the NDE (12, 13)
as our baseline, which contains the CAV model and
NDD vehicles that follow the naturalistic driving model.
In the NDE, the crash case frequency is around 1 3 10�6,
which is rare. In the corner case generation environment,
we control the nearest BV around the CAV using the
trained DQN. Results show the crash case frequency is
about 0.286 as shown in Figure 2. Therefore, for corner
case generation frequency, we get about 3 3 106 times
more corner cases compared with the NDE.

To evaluate the corner case generation environment,
we run about 50mi in both NDE and the corner case
generation environment. The distribution of the bumper-
to-bumper distance (BBD) and time-to-collision (TTC)
metric are calculated to compare the difference between
NDE and the corner case generation environment. The
comparison of BBD can be seen in Figure 3a (from the
CAV to the front vehicle) and Figure 3b (from CAV to
the rear vehicle), and the comparison of TTC for front
and rear vehicles can be seen in Figure 3, c and d, respec-
tively. From these figures, we can see that the testing
vehicle in the corner case generation environment has
much smaller BBD and TTC with both the front car and
the rear car. It suggests that the corner case generation
environment is much riskier than NDE.

To further test whether the corner case environment
could fit non-surrogate CAV models, a CAV model
based on reinforcement learning is introduced as another

Table 1. Experiments Hyper-Parameters

Hyper-parameter Value

Mini-batch size 16
Replay memory size 1e6
Discount factor 1
Learning rate 1e26
Initial exploration 1
Final exploration 0.1
Replay start size 5,000
Target network update 1,000

Figure 2. Deep Q network training result.

Sun et al 7



testing model. When the corner case environment is uti-
lized for the surrogate IDM-based model, we get approx-
imately 28.6% crash probability, whereas for the
reinforcement learning-based testing model we get a 10%
crash rate.

Additionally, a logic-based crash-type analysis is
introduced to help illustrate the generated corner cases in
detail. In this study, we adopted the crash-type diagram
defined by the Fatality Analysis Reporting System,
which is a nationwide census provided by the National
Highway Traffic Safety Administration. Specifically, we
categorize the generated corner cases into five types
according to the positions and angles of the CAV and
BV involved in each crash. Detailed illustrations of the
categories can be seen in Figure 4, where the blue vehi-
cles denote CAVs and the green vehicles denote BVs.
The crash-type distribution of generated corner cases of
IDM-based CAV and reinforcement learning-based
CAV can be seen in Figure 5. From the figure, we can

see that both experiments contain the type 1, 2, 4, 5 of
the overall categories, and type 4 occupies the most pro-
portion. For each crash type, a detailed corner case
demonstration is attached to illustrate the case type in
detail, which can be seen in Figure 6.

Corner Case Analysis

Corner Case Feature Extraction. In the generated corner
cases (around 50,000 scenarios), different cases have dif-
ferent sizes. For the convenience of corner case analysis,
we need one unified structure of selecting features from
the corner cases. As discussed before, the scenario is
composed of scenes, and the scene can be written as
fx(t)1 , x(t)2 , . . . , x(t)mt

g. Recall that the vehicle number mt is
determined by time t and is continuously changing at
each time step. Therefore, to obtain features with the
same shape from different time steps, we need to restrict
the number of vehicles recorded. Based on domain

Figure 3. Comparison between naturalistic driving environment and corner case generation environment: (a) BBD front car, (b) BBD
rear car, (c) TTC front car, and (d) TTC rear car.
Note: BBD = bumper-to-bumper distance; TTC = time to collision.

8 Transportation Research Record 00(0)



knowledge, we select the most critical BV in the crash
corner cases (i.e., the nearest vehicle in the BVs). Then,
we use the following equations as the extracted feature
of one time step:

½rlon, rlat, rr, hCAV , hBV �, ð10Þ

where rlon refers to the longitudinal relative distance, rlat

refers to the lateral relative distance, rr refers to the velo-
city difference, and hCAV , hBV represent the heading
angle of CAV and critical BV, respectively. The feature
extracted can represent the key information in a snap-
shot of the traffic simulation. To characterize the long-
term change of the traffic state, we continuously pick
features from k time steps before crashes.

In the experiment, eight values of the time period are
applied, starting from the one time step to 15 consecutive
time steps. For each time step, five features are consid-
ered as shown in Equation 10. Therefore, for 15 time
steps, 75 features are considered. To extract the crucial
features from the high-dimensional data, we apply the
PCA algorithm and pick the first two dimensions. After
the feature extraction and projection, we implement the
DBSCAN clustering method to differentiate the minority
and the majority of the generated corner cases. The dis-
tribution of the data points projection on the two-
dimensional (2-D) plane can be seen in Figure 7. The
data points located in the high-density area are classified

as the majority (green), whereas the low-density ones are
classified as the minority (red). From the clustering
result, one obvious trend is that, with the increase of the
time period, the data points seem to be less gathered.
With regard to the features of 1 or 2 s, only several data
points are identified as the minority (marked as red).
However, when it turns to quiet a long time period
(15 s), nearly all data points are randomly distributed
over the feature space, which makes it harder to differ-
entiate the majority and the minority. Therefore, in the
following analysis, we use the 1 s data as an example to
illustrate the result of the generated corner cases. It is
also reasonable considering that most of the vehicle acci-
dents in the real world involve only a small number of
vehicles in a short period.

Corner Case Clustering. After applying the DBSCAN
method on the generated corner cases, we further cluster
the minority of generated corner cases. As shown in
Figure 8, the majority (labelled area A) are distinguished
from the minority. We can see that the majority of the
corner cases form a rectangle in the projected PCA fea-
ture space. In this rectangle, most cases share some char-
acteristics in common: the CAV is running straight on

Figure 4. Illustration of crash types.

Figure 5. Distributions of crash types.

Figure 6. Demonstration of each crash type in CARLA.

Sun et al 9



the road, and the BV is directly crashing into the CAV
from different angles and different positions as shown in
Figure 9a. In this type of crash, the crash angle and crash
relative position parameters are continuous in the para-
meter space, whereas other parameters are the same.
Therefore, even though it seems that there are many dif-
ferent kinds of crashes in this crash type, they are closely
connected in the PCA feature space.

From the 2-D projection of the feature vector, we can
see that the minority can be assigned to several clusters,
whereas the majority is closely connected. Therefore, in
this case, we apply the clustering method (K-means) on
the minority, resulting in four clusters (B, C, D, and E in
Figure 8). The clustering process took 0.097 s on a laptop

with i7-8750h CPU and 24GB RAM. For each cluster,
cases of each cluster share similar internal properties. For
example, cases of B cluster in Figures 8 and 9 demon-
strate the rear-end cases, in which one BV cuts in the
CAV’s lane and forces the CAV to change its lane, mak-
ing the CAV crash into another BV in the original lane
behind the CAV. Cases of C cluster indicate another
crash type: CAV and BV change their lanes simultane-
ously and crash into each other. Cases of D cluster show
that the BV tries to change into the lane of the CAV and
causes a crash when making the lane-change decision.
The only case in the E cluster behaves similarly to the
cases in the D cluster. However, there are some slight dif-
ferences: the crash in the E cluster happens after the BV

Figure 7. Corner case extracted features.

Figure 8. Corner case clustering results. Figure 9. Corner case examples.

10 Transportation Research Record 00(0)



changes into the lane of the CAV and can be defined as a
rear-end crash.

NDD-Bounded Case Study

We also provide the analysis results of another NDD-
bounded generation method. In Equation 6, the con-
trolled BV can choose any actions in the pre-defined
action space. However, in the NDE, the BVs generally
have limited choices of actions. To solve this issue, we
slightly modify the optimization problem in Equation 6
by adding action constraints. By applying the constraints,
we can restrict the available actions of BVs, so the agent
in the environment can only choose the actions that are
possible in the NDE. The new optimization problem can
be written as follows:

max
r

P(Aju, r), ð11Þ

s:t: pr(uk jsk , u)= 0 if P(uk jsk , u)= 0: ð12Þ

Therefore, the agent trained from the modified opti-
mization problem can only reproduce the corner cases
that are likely to happen in the NDE. In this way, the
generated corner cases are much more realistic and valu-
able for the CAV evaluation. Using the same analysis
method of the previous result, we apply PCA on the
crash event data and reduce the data into two dimen-
sions. After that, we apply the DBSCAN algorithm on
the PCA projected features to get different clusters
and outliers. The experiment is applied on 1,627 data
samples and takes 0.0139 s on a laptop with i7-8750h
CPU and 24GB RAM. Detailed results can be seen in
Figure 10.

From Figure 10, we can see that there are two main
clusters identified and several outliers (D). To analyze

the results, we split one large cluster into B and C, which
are deeply connected but demonstrate different data lay-
out. As shown in Figure 11, data points in area A share
similar properties: the BV suddenly cuts in the CAV and
causes the rear-end collision. We define it as the ‘‘aggres-
sive cut-in’’ cluster. B, C, and D are in nearly the same
situation: CAV and BV change their lanes at the same
time and crash in the middle lane. We define it as the
‘‘lane conflict’’ cases. Even though the causes of crashes
are similar, these three different clusters have different
crash snapshots. In the B cluster, the CAV and BV are
involved in a side-by-side collision. In the C cluster,
CAV(BV) crashes into BV(CAV) at the rear of the car.
In the D cluster, which is identified as the relatively rare
events (minority) in the generated corner cases, we can
see that the CAV and BV do not crash until they change
to the same lane, after which the rear-end collision hap-
pens. Therefore, even though the last three clusters are
corner cases caused by the same reason, the decision
variables and conditions are different case by case. In the
outlier part (D), we can get some cases with extreme
decision variables.

The extracted valuable corner cases can provide
insight into further improvement of the CAV model.
Although some cases are inevitable, there are cases
caused by the flaws of the CAV model, and thus can be
avoided by more intelligent CAVs. For example, for the
CAV model in the case study, one significant limitation
is the lack of behavioral competency for lateral collision
avoidance, especially during the lane-changing process,
as shown in Figure 11 (B, C, and D clusters).

Conclusion

In this paper, we propose a decision-making corner case
generation and analysis method for CAV testing and
evaluation. By utilizing MDP formulation and DRL

Figure 10. Corner case clustering results in the naturalistic
driving data (NDD)-bounded case study.

Figure 11. Naturalistic driving data (NDD)-bounded corner
case examples.

Sun et al 11



techniques, the corner cases of a highway driving envi-
ronment are purposely generated with a higher probabil-
ity, compared with NDE. After generating the corner
cases, the valuable corner cases are further identified by
the corner case analysis method, including feature extrac-
tion and clustering techniques. Two case studies are pro-
vided to validate the proposed methods. Results show
that the valuable corner cases can be effectively gener-
ated and identified, which is helpful for CAV evaluation
and development by revealing flaws of the given CAV
model. Future studies may focus on introducing more
different traffic participants (pedestrians, traffic lights,
etc.). Furthermore, corner case generation for the urban
driving environment deserves more investigation, includ-
ing intersection and roundabout scenarios.

Author Contributions

The authors confirm contribution to the paper as follows: study
concept and design: Haowei Sun, Shuo Feng, and Henry Liu;
data collection: Haowei Sun, Xintao Yan; analysis and interpre-
tation of results: Haowei Sun, Shuo Feng, and Henry Liu; draft
manuscript preparation: Haowei Sun, Shuo Feng, and Henry
Liu. All authors reviewed the results and approved the final ver-
sion of the manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This research was funded by the U.S. Department of
Transportation Region 5 University Transportation Center:
Center for Connected and Automated Transportation of the
University of Michigan.

ORCID iDs

Haowei Sun https://orcid.org/0000-0002-0232-117X
Shuo Feng https://orcid.org/0000-0002-2117-4427
Xintao Yan https://orcid.org/0000-0002-0569-5628
Henry X. Liu https://orcid.org/0000-0002-3685-9920

References

1. Kalra, N., and S. M. Paddock. Driving to Safety: How

Many Miles of Driving Would It Take to Demonstrate

Autonomous Vehicle Reliability? Transportation Research

Part A: Policy and Practice, Vol. 94, 2016, pp. 182–193.
2. Li, L., W.-L. Huang, Y. Liu, N.-N. Zheng, and F.-Y.

Wang. Intelligence Testing for Autonomous Vehicles: A

New Approach. IEEE Transactions on Intelligent Vehicles,

Vol. 1, No. 2, 2016, pp. 158–166.

3. Li, L., Y.-L. Lin, N.-N. Zheng, F.-Y. Wang, Y. Liu, D.

Cao, K. Wang, and W.-L. Huang. Artificial Intelligence

Test: A Case Study of Intelligent Vehicles. Artificial Intelli-

gence Review, Vol. 50, No. 3, 2018, pp. 441–465.
4. Koren, M., S. Alsaif, R. Lee, and M. J. Kochenderfer.

Adaptive Stress Testing for Autonomous Vehicles. Proc.,

2018 IEEE Intelligent Vehicles Symposium (IV), Chang-

shu, China, IEEE, New York, 2018, pp. 1–7.
5. Cui, L., J. Hu, B. B. Park, and P. Bujanovic. Development

of a Simulation Platform for Safety Impact Analysis Con-

sidering Vehicle Dynamics, Sensor Errors, and Communi-

cation Latencies: Assessing Cooperative Adaptive Cruise

Control under Cyber Attack. Transportation Research Part

C: Emerging Technologies, Vol. 97, 2018, pp. 1–22.
6. Thorn, E., S. C. Kimmel, M. Chaka, and B. A. Hamilton.

A Framework for Automated Driving System Testable

Cases and Scenarios. Technical Report. United States

Department of Transportation, National Highway Traffic

Safety Administration, Washington, D.C., 2018.
7. Li, L., X. Wang, K. Wang, Y. Lin, J. Xin, L. Chen, L. Xu,

B. Tian, Y. Ai, J. Wang, and D. Cao. Parallel Testing of

Vehicle Intelligence via Virtual-Real Interaction. Science

Robotics, Vol. 4, No. 28, 2019, Article eaaw4106.
8. Wang, P., Y. Chen, C. Wang, F. Liu, J. Hu, and N. N.

Van. Development and Verification of Cooperative Adap-

tive Cruise Control via LTE-V. IET Intelligent Transport

Systems, Vol. 13, No. 6, 2019, pp. 991–1000.
9. Liu, P., Z. Xu, and X. Zhao. Road Tests of Self-Driving

Vehicles: Affective and Cognitive Pathways in Acceptance

Formation. Transportation Research Part A: Policy and

Practice, Vol. 124, 2019, pp. 354–369.
10. Liu, P., R. Yang, and Z. Xu. How Safe Is Safe Enough for

Selfdriving Vehicles? Risk Analysis, Vol. 39, No. 2, 2019,

pp. 315–325.
11. Li, L., N. Zheng, and F.-Y. Wang. A Theoretical Founda-

tion of Intelligence Testing and Its Application for Intelli-

gent Vehicles. IEEE Transactions on Intelligent

Transportation Systems, 2020, pp. 1–10.
12. Feng, S., X. Yan, H. Sun, Y. Feng, and H. X. Liu. Intelli-

gent Driving Intelligence Test for Autonomous Vehicles

with Naturalistic and Adversarial Environment. Nature

Communications, Vol. 12, 2021, p. 748. https://doi.org/

10.1038/s41467-021-21007-8.
13. Yan, X., S. Feng, H. Sun, and H. X. Liu. Distributionally

Consistent Simulation of Naturalistic Driving Environ-

ment for Autonomous Vehicle Testing. arXiv Preprint

arXiv:2101.02828, 2021.
14. Chen, S.-T., C. Cornelius, J. Martin, and D. H. Chau.

Robust Physical Adversarial Attack on Faster R-CNN

Object Detector. arXiv Preprint arXiv:1804.05810, Vol. 2,

No. 3, 2018, p. 4.
15. Evtimov, I., K. Eykholt, E. Fernandes, T. Kohno, B. Li,

A. Prakash, A. Rahmati, and D. Song. Robust Physical

World Attacks on Machine Learning Models. arXiv Pre-

print arXiv:1707.08945, Vol. 2, No. 3, 2017, p. 4.
16. Eykholt, K., I. Evtimov, E. Fernandes, B. Li, A. Rahmati,

C. Xiao, A. Prakash, T. Kohno, and D. Song. Robust

Physical-World Attacks on Deep Learning Visual Classifi-

cation. Proc., IEEE Conference on Computer Vision and

12 Transportation Research Record 00(0)

https://orcid.org/0000-0002-0232-117X
https://orcid.org/0000-0002-2117-4427
https://orcid.org/0000-0002-0569-5628
https://orcid.org/0000-0002-3685-9920
https://doi.org/10.1038/s41467-021-21007-8
https://doi.org/10.1038/s41467-021-21007-8


Pattern Recognition, Salt Lake City, UT, IEEE, New York,

2018, pp. 1625–1634.
17. Xie, C., J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille.

Adversarial Examples for Semantic Segmentation and

Object Detection. Proc., IEEE International Conference on

Computer Vision, Venice, Italy, IEEE, New York, 2017,

pp. 1369–1378.
18. Ding, W., M. Xu, and D. Zhao. Learning to Collide: An

Adaptive Safety-Critical Scenarios Generating Method.

arXiv Preprint arXiv:2003.01197, 2020.
19. Treiber, M., A. Hennecke, and D. Helbing. Congested

Traffic States in Empirical Observations and Microscopic

Simulations. Physical Review E, Vol. 62, No. 2, 2000, p.

1805.
20. Treiber, M., and D. Helbing. MOBIL: General Lane-

Changing Model for Car-Following Models. Disponıvel

Acesso Dezembro, 2016.
21. Krauß, S., P. Wagner, and C. Gawron. Metastable States

in a Microscopic Model of Traffic Flow. Physical Review

E, Vol. 55, No. 5, 1997, p. 5597.
22. Bareiss, D., and J. van den Berg. Generalized Reciprocal

Collision Avoidance. The International Journal of Robotics

Research, Vol. 34, No. 12, 2015, pp. 1501–1514.
23. Weng, B., S. J. Rao, E. Deosthale, S. Schnelle, and F. Bar-

ickman. Model Predictive Instantaneous Safety Metric for

Evaluation of Automated Driving Systems. Proc., 2020

IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV,

IEEE, New York, 2020, pp. 1899–1906.
24. Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J.

Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.

Fidjeland, G. Ostrovski, and S. Petersen. Human-Level

Control through Deep Reinforcement Learning. Nature,

Vol. 518, No. 7540, 2015, pp. 529–533.
25. Wold, S., K. Esbensen, and P. Geladi. Principal Compo-

nent Analysis. Chemometrics and Intelligent Laboratory

Systems, Vol. 2, No. 1–3, 1987, pp. 37–52.
26. Alsabti, K., S. Ranka, and V. Singh. An Efficient K-Means

Clustering Algorithm. Electrical Engineering and Computer

Science, Vol. 43, 1997.
27. Ester, M., H.-P. Kriegel, J. Sander, and X. Xu. Density-

Based Spatial Clustering of Applications with Noise. Proc.,

International Conference on Knowledge Discovery and Data

Mining, Portland, OR, Vol. 240, 1996, p. 6.
28. Goodfellow, I. J., J. Shlens, and C. Szegedy. Explaining

and Harnessing Adversarial Examples. arXiv Preprint

arXiv:1412.6572, 2014.
29. Yuan, X., P. He, Q. Zhu, and X. Li. Adversarial Examples:

Attacks and Defenses for Deep Learning. IEEE Transac-

tions on Neural Networks and Learning Systems, Vol. 30,

No. 9, 2019, pp. 2805–2824.
30. Buckner, C. Understanding Adversarial Examples

Requires a Theory of Artefacts for Deep Learning. Nature

Machine Intelligence, Vol. 2, No. 12, 2020, pp. 731–736.
31. Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,

I. Goodfellow, and R. Fergus. Intriguing Properties of

Neural Networks. arXiv Preprint arXiv:1312.6199, 2013.
32. Kurakin, A., I. Goodfellow, and S. Bengio. Adversarial

Examples in the Physical World. arXiv Preprint

arXiv:1607.02533, 2017.

33. Lu, J., H. Sibai, E. Fabry, and D. Forsyth. No Need to

Worry about Adversarial Examples in Object Detection in

Autonomous Vehicles. arXiv Preprint arXiv:1707.03501,

2017.
34. Lu, J., H. Sibai, E. Fabry, and D. Forsyth. Standard Detec-

tors Aren’t (Currently) Fooled by Physical Adversarial

Stop Signs. arXiv Preprint arXiv:1710.03337, 2017.
35. Ma, W.-H., and H. Peng. A Worst-Case Evaluation

Method for Dynamic Systems. ASME Journal of Dynamic

Systems, Measurement, and Control, Vol. 121, No. 2, 1999,

pp. 191–199.
36. Zhao, D., H. Lam, H. Peng, S. Bao, D. J. LeBlanc, K.

Nobukawa, and C. S. Pan. Accelerated Evaluation of

Automated Vehicles Safety in Lane-Change Scenarios

Based on Importance Sampling Techniques. IEEE Trans-

actions on Intelligent Transportation Systems, Vol. 18, No.

3, 2016, pp. 595–607.
37. Zhao, D., X. Huang, H. Peng, H. Lam, and D. J. LeBlanc.

Accelerated Evaluation of Automated Vehicles in Car-Fol-

lowing Maneuvers. IEEE Transactions on Intelligent Trans-

portation Systems, Vol. 19, No. 3, 2017, pp. 733–744.
38. Feng, S., Y. Feng, C. Yu, Y. Zhang, and H. X. Liu. Test-

ing Scenario Library Generation for Connected and Auto-

mated Vehicles, Part I: Methodology. IEEE Transactions

on Intelligent Transportation Systems, Vol. 22, No. 3, 2020,

pp. 1573–1582.
39. Feng, S., Y. Feng, H. Sun, S. Bao, Y. Zhang, and H. X.

Liu. Testing Scenario Library Generation for Connected

and Automated Vehicles, Part II: Case Studies. IEEE

Transactions on Intelligent Transportation Systems, 2020,

pp. 1–13.
40. Feng, S., Y. Feng, H. Sun, Y. Zhang, and H. X. Liu. Test-

ing Scenario Library Generation for Connected and Auto-

mated Vehicles: An Adaptive Framework. IEEE

Transactions on Intelligent Transportation Systems, 2020,

pp. 1–10. https://doi.org/10.1109/TITS.2020.3023668.
41. Feng, S., Y. Feng, X. Yan, S. Shen, S. Xu, and H. X. Liu.

Safety Assessment of Highly Automated Driving Systems

in Test Tracks: A New Framework. Accident Analysis &

Prevention, Vol. 144, 2020, Article 105664.
42. Akagi, Y., R. Kato, S. Kitajima, J. Antona-Makoshi, and

N. Uchida. A Risk-Index Based Sampling Method to Gen-

erate Scenarios for the Evaluation of Automated Driving

Vehicle Safety. Proc., 2019 IEEE Intelligent Transportation

Systems Conference (ITSC), Auckland, New Zealand,

IEEE, New York, 2019, pp. 667–672.
43. O’Kelly, M., A. Sinha, H. Namkoong, R. Tedrake, and J.

C. Duchi. Scalable End-to-End Autonomous Vehicle Test-

ing via Rare-Event Simulation. Advances in Neural Infor-

mation Processing Systems, Vol. 31, 2018, pp. 9827–9838.
44. Karunakaran, D., S. Worrall, and E. Nebot. Efficient Sta-

tistical Validation with Edge Cases to Evaluate Highly

Automated Vehicles. arXiv Preprint arXiv:2003.01886,

2020.
45. Shalev-Shwartz, S., S. Shammah, and A. Shashua. On a

Formal Model of Safe and Scalable Self-Driving Cars.

arXiv Preprint arXiv:1708.06374, 2017.
46. Ulbrich, S., T. Menzel, A. Reschka, F. Schuldt, and M.

Maurer. Defining and Substantiating the Terms Scene,

Sun et al 13

https://doi.org/10.1109/TITS.2020.3023668


Situation, and Scenario for Automated Driving. Proc.,

2015 IEEE 18th International Conference on Intelligent

Transportation Systems, Gran Canaria, Spain, IEEE, New
York, 2015, pp. 982–988.

47. Tai, L., G. Paolo, and M. Liu. Virtual-to-Real Deep Rein-
forcement Learning: Continuous Control of Mobile
Robots for Mapless Navigation. Proc., 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS), Vancouver, BC, IEEE, New York, 2017, pp. 31–
36.

48. Sutton, R. S., and A. G. Barto. Reinforcement Learning:

An Introduction. MIT Press, Cambridge, MA, 2018.
49. Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Anto-

noglou, D. Wierstra, and M. Riedmiller. Playing Atari
with Deep Reinforcement Learning. arXiv Preprint

arXiv:1312.5602, 2013.
50. Van Hasselt, H., A. Guez, and D. Silver. Deep Reinforce-

ment Learning with Double Q-Learning. arXiv Preprint

arXiv:1509.06461, 2015.
51. Hessel, M., J. Modayil, H. Van Hasselt, T. Schaul, G.

Ostrovski, W. Dabney, D. Horgan, B. Piot, M. Azar, and
D. Silver. Rainbow: Combining Improvements in Deep
Reinforcement Learning. arXiv Preprint arXiv:1710.02298,
2017.

52. Wang, Z., T. Schaul, M. Hessel, H. Hasselt, M. Lanctot,

and N. Freitas. Dueling Network Architectures for Deep

Reinforcement Learning. Proc., International Conference

on Machine Learning, PMLR, New York, NY, 2016,

pp. 1995–2003.
53. Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y.

Tassa, D. Silver, and D. Wierstra. Continuous Control

with Deep Reinforcement Learning. arXiv Preprint

arXiv:1509.02971, 2015.
54. Ference, J. J. The Integrated Vehicle-Based Safety Systems

Initiative. National Highway Traffic Safety Administration,

Washington, D.C., 2006.
55. Leurent, E. An Environment for Autonomous Driving

Decision-Making. 2018. https://github.com/eleurent/high

way-env.
56. Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J.

Schulman, J. Tang, and W. Zaremba. OpenAI Gym. arXiv

Preprint arXiv:1606.01540, 2016.

57. Dosovitskiy, A., G. Ros, F. Codevilla, A. Lopez, and V.

Koltun. CARLA: An Open Urban Driving Simulator.

arXiv Preprint arXiv:1711.03938, 2017.

The views presented in this paper are those of the authors alone.

14 Transportation Research Record 00(0)

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

