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Abstract— Cooperative driving at signal-free intersections,
which aims to improve driving safety and efficiency for connected
and automated vehicles, has attracted increasing interest in
recent years. However, existing cooperative driving strategies
either suffer from computational complexity or cannot guarantee
global optimality. To fill this research gap, this paper proposes
an optimal and computationally efficient cooperative driving
strategy with the polynomial-time complexity. By modeling the
conflict relations among the vehicles, the solution space of the
cooperative driving problem is completely represented by a
newly designed small-size state space. Then, based on dynamic
programming, the globally optimal solution can be searched
inside the state space efficiently. It is proved that the proposed
strategy can reduce the time complexity of computation from
exponential to a small-degree polynomial. Simulation results
further demonstrate that the proposed strategy can obtain the
globally optimal solution within a limited computation time under
various traffic demand settings.

Index Terms— Connected and automated vehicles, cooperative
driving, signal-free intersection, dynamic programming.

I. INTRODUCTION

W ITH the help of vehicle-to-everything (V2X) tech-
nologies, the emergence of connected and automated

vehicles (CAVs) shows a great potential to revolutionize traffic
operations around conflict areas [1]–[7]. For example, recent
studies have proposed some promising methods to jointly
optimize signal timing and vehicle trajectory at signalized
conflict areas, which shows a good performance in improv-
ing traffic safety and efficiency [8]–[12]. More significantly,
benefiting from the fact that CAVs can share the driving
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states with adjacent vehicles, we can even realize signal-free
traffic control at conflict areas by optimizing the cooperative
movements of vehicles [13]–[16]. In such cases, vehicles can
keep a close safety gap with each other to pass through the
conflict area safely and efficiently. Such techniques can be
regarded as cooperative driving and have been widely studied
in recent years.

It has been pointed out in [17]–[21] that the key problem
of cooperative driving is to determine the proper sequence of
vehicles to pass the conflict areas (e.g., on-ramp areas and
signal-free intersections), so as to fully utilize the limited
road resources. The optimization of passing sequence at on-
ramps has been well discussed in recent studies [22]–[25].
However, compared with the merging problem, there exist
much more complex conflict relations of vehicles at signal-free
intersection, which leads to complicated interactions between
vehicles. Thus, cooperative driving at intersections will fail
by directly applying the strategies of merging problem, and
further investigation is required.

Similar to [25], [26], existing studies of planning the
passing sequence of vehicles at signal-free intersections can
be classified into two categories, i.e., optimization-based and
heuristics-based strategies. Optimization-based strategies can
find the globally optimal passing sequence but usually suffer
from computational complexity [1], [27]–[29]. Heuristics-
based strategies can improve computational efficiency but lack
a rigorous theoretical guarantee [30]–[35].

To overcome the limitations of existing cooperative driving
strategies for signal-free intersections, we propose an optimal
and computationally efficient cooperative driving strategy in
this paper. By modeling the conflict relations among the
vehicles, the solution space of cooperative driving problem is
completely represented by a newly designed small-size state
space. Then, based on dynamic programming, the globally
optimal solution can be searched inside the state space effi-
ciently. It can reduce the time complexity of computation from
exponential to a small-degree polynomial.

This paper significantly extends our previous work for the
on-ramp merging problem [22], where a dynamic program-
ming method was proposed to obtain the globally optimal
merging solution with polynomial-time complexity. However,
this method cannot be directly applied to signal-free intersec-
tions, because of the following challenges: First, the number
of conflicts between vehicles significantly increases, as the
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interactions between vehicles become more complex. More
importantly, both the conflict and conflict-free pairs of vehicles
exist in the conflict area of an intersection, which is denoted
by the heterogeneous conflict relations in this paper, namely,
more than one vehicle may pass the conflict area at the
same time without collision. In such a case, state transition
could not guarantee the Markov property and thus dynamic
programming is invalidated [36], [37].

In this paper, we rebuild the dynamic programming model
for signal-free intersections. To keep Markov property, a novel
state transition strategy is designed to model the conflict-
free pairs of vehicles, where multiple non-conflict vehicles
can be assigned with the right of way instead of dealing
with only one vehicle during a state transition. It guarantees
that each state transition explicitly represents one kind of
conflicts between vehicles so that the objective value of the
current state is only determined by its predecessor state,
i.e., the state transition satisfies Markov property. Moreover,
the number of states and state transitions of the constructed
state space is restricted as a small-degree polynomial with
the number of vehicles. Therefore, dynamic programming is
reactivated at signal-free intersections, and we can obtain the
globally optimal solution with the polynomial-time complexity
of computation. It is a significant improvement compared
with most existing studies about cooperative driving at signal-
free intersections (e.g., [29], [34], [35]), where the size of
solution space increases exponentially with the increasing
number of vehicles. It is also worth emphasizing that the
proposed strategy is generic in most traffic scenarios where
both the conflict and conflict-free pairs of vehicles exist.

Theoretical analysis is proposed to justify the computational
time complexity of the proposed optimal strategy. It is proved
that the optimal strategy has the polynomial-time complexity
of computation, which has a lower bound O(N4) and an upper
bound O(N6), where N denotes the total number of vehi-
cles within consideration. It is the theoretical foundation for
overcoming the limitations of existing strategies. Furthermore,
simulation results also demonstrate that the proposed strategy
can obtain the globally optimal solution within a limited
computation time, comparing with the existing strategies under
various traffic demand settings.

The main contributions of this paper include: (a) we con-
struct a novel state space with a much smaller size than that in
the existing studies to describe the complete solution space of
cooperative driving at signal-free intersections; (b) we realize
optimal cooperative driving at signal-free intersections, which
overcomes the limitations of the existing strategies regarding
global optimality and computational efficiency; (c) we give
a rigorous theoretical analysis about the computational com-
plexity of the proposed strategy, which is usually lacking in
most existing studies.

The rest of this paper is organized as follows. Section II
reviews the related works about determining sequence.
Section III presents the typical signal-free intersection and for-
mulates the cooperative driving problem. Section IV proposes
the optimal strategy for cooperative driving at intersections.
Then, Section V gives theoretical analysis about the compu-
tational complexity, and simulation results are in Section VI.

Finally, the conclusion and further works are presented in
Section VII.

II. RELATED WORK

In this section, we briefly review the related works on deter-
mining passing sequence of vehicles at signal-free intersec-
tions. As aforementioned, two types of approaches have been
proposed to solve the problem of planning passing sequence,
i.e., optimization-based and heuristics-based strategies.

Optimization-based strategy aims to enumerate all possible
passing sequences of vehicles to find the globally optimal
solution. One typical type of the optimization-based strategies
is to formulate a large-scale mixed-integer programming (MIP)
problem to resolve all conflicts between vehicles, where
each conflict introduces a binary variable to mathematically
describe the relative passing sequence [1], [27], [28]. However,
the computational complexity increases exponentially with the
increasing number of conflicts between vehicles, which causes
the “curse of dimensionality”. Another type of optimization-
based strategies is adopting a string to represent the vehicle
sequence and then describe the complete solution space of the
optimization problem. For example, Li et al. [29] formulated
a spanning tree and proposed a pruning rule to search for
the globally optimal solution. However, due to the complex
conflict relations between vehicles, it still suffers from the
state space explosion and thus is intractable for real-time
applications.

Heuristics-based strategy usually stops at a local optimal
solution within a limited computation time, aiming to improve
computational efficiency. Autonomous intersection manage-
ment (AIM) [30], [31] and reservation-based strategy [32],
[33] are the typical heuristics-based strategies utilized in the
problem of cooperative driving, where heuristic rules are
used to instruct the vehicles passing through the conflict area
roughly in first-in-first-out (FIFO) manner [22]. Nevertheless,
as illustrated in [19], [20], these strategies have a poor per-
formance in improving traffic efficiency. In [38], an auction-
based AIM was proposed to determine the passing sequence of
vehicles. Simulation results demonstrate that this strategy can
outperform the FIFO strategy in most cases, but it theoretically
leads to a local optimal solution and thus cannot guarantee traf-
fic efficiency. Grouping vehicles in the same lane into platoons
is an effective way to reduce the size of the solution space
and then improve computational efficiency [23], [39]–[41].
However, since vehicles in the same group may have different
driving intentions (i.e., going straight; turning left/right) at an
intersection scenario, how to select the vehicles that can be
grouped remains a new challenge. Recently, several promising
strategies are proposed to keep a good balance between
computational complexity and traffic efficiency. In [34], [35],
Monte Carlo tree search (MCTS) method combining with
heuristic rules is first introduced to the planning problem
of vehicle sequence at a signal-free intersection. Numerical
simulation results indicate that these strategies can obtain a
near-optimal passing sequence within a limited computation
time. However, the performance of these strategies lacks a
rigorous theoretical guarantee and further analysis is necessary
for practical applications.
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Fig. 1. A typical signal-free intersection scenario with five vehicles.

III. PROBLEM FORMULATION

A. Scenario and Notations

In this paper, we select a typical intersection scenario to
introduce our method, as shown in Fig. 1. The red area is
the conflict area, where the vehicles from different directions
may collide. The intersection has a control area. The distance
from the entry point of the control area to the entry point of
the conflict area, denoted as lc, is assumed the same for all
entry directions. The vehicles within the control area can share
the driving states with each other and move automatically
according to the driving plans determined by the cooperative
driving strategies. As traffic collisions and delays mainly
occur on the vehicles with left-turn and straight movements,
the right-turn vehicles can usually move freely around the
intersection. To simplify the descriptions, we only consider the
left-turn and straight vehicles in this paper, and the scenario
including right-turn vehicles can be tackled in a similar way.

Several reasonable assumptions about the studied scenario
are added as follows: a) all vehicles are connected and
automated (CAVs); b) lane-change behavior of vehicles within
the control area is not allowed; c) vehicles move at a constant
velocity vc after entering the conflict area. Each vehicle is
given a unique identity after arriving at the control area, and
C AVi means the i th vehicle that reaches the control area.
The vehicle identity sets of lane 1, 2, 3 and 4 are denoted
by N1 = {1, . . . , n̂1}, N2 = {1, . . . , n̂2}, N3 = {1, . . . , n̂3}
and N4 = {1, . . . , n̂4} respectively, where n̂1, n̂2, n̂3 and n̂4
denote the total number of vehicles on lane 1, lane 2, lane 3
and lane 4 respectively. The main notations in this paper are
shown in TABLE I.

B. Optimization Problem

As illustrated in [20], [29], cooperative driving aims to
improve traffic efficiency and safety by planning the sequence
of vehicles passing through the conflict area. To reach this
goal, we formulate the objective function as

min
Tassign

J, (1a)

J = max
i∈N1 ∪ N2 ∪ N3 ∪N4

tassign,i , (1b)

tassign,i ∈ T
assign, (1c)

Fig. 2. Four kinds of collision-free pairs of vehicles at an intersection.

where the decision variable tassign,i denotes the arrival time
assigned to C AVi to move into the conflict area, and Tassign

is the set of the arrival time assigned for all vehicles within
the control area. Therefore, J denotes the total passing time
of all vehicles to pass through the conflict area [22], [42].

The arrival time assigned to each vehicle needs to satisfy
vehicle dynamics, i.e.,

tassign,i ≥ tmin,i , (2)

where tmin,i denotes the minimal arrival time assigned to
vehicle i , which can be easily calculated according to vehicle
dynamics [22], [34].

As for the vehicles moving on the same lane, the arrival time
assigned to each vehicle should satisfy the physical constraints
to avoid rear-end collision, i.e.,

tassign,i − tassign, j ≥ �t,1, (3)

where �t,1 denotes the minimal safe gap between two con-
secutive vehicles to avoid rear-end collision. Here, C AVj is
physically ahead of C AVi , e.g., C AVA and C AVD in Fig. 1.

The vehicles from different lanes may have collisions in
the conflict area. The method to avoid these collisions is to
schedule the vehicles moving into the conflict area sequen-
tially. Thus, the binary variables are introduced to describe
the constraints of vehicle sequence, i.e.,

tassign,i − tassign, j + M · bi, j ≥ �t,2, (4)

tassign, j − tassign,i + M · (1 − bi, j ) ≥ �t,2, (5)

where �t,2 denotes the minimal safe gap to avoid collisions
between vehicles from different lanes. C AVi and C AVj are
two vehicles from different lanes with conflicts, e.g., C AVA

and C AVB in Fig. 1. M is a positive and sufficiently large
number. bi, j is the binary variable and we use B to denote the
set of all binary variables. Here, bi, j = 1 implies that vehicle
i enters conflict area earlier than vehicle j .

Based on the above descriptions, the planning problem
of vehicle sequence can be mathematically formulated as a
mixed-integer programming problem (MIP), as shown in (6).

min
Tassign,B

J

s.t. (2)(3)(4)(5) (6)

C. Problem Challenges

Compared with the on-ramp merging problem that has been
widely investigated, there are two major challenges of solving
the cooperative driving problem at signal-free intersections:
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TABLE I

THE NOMENCLATURE LIST

1) Increased Number of Conflicts: the number of conflicts
between vehicles has increased a lot. As shown in Fig. 1,
each red dot represents one kind of conflict pairs, and each
conflict between two vehicles will introduce a binary variable
in the problem (6). Thus, the size of solution space increases
exponentially with the increasing number of conflicts [1], [25],
[43], [44].

2) Heterogeneous Conflict Relations: besides the conflict
pairs of vehicles, there also exist several collision-free pairs
of vehicles shown in Fig. 2, where the corresponding vehicles
are allowed to move into the conflict area at the same time.
The heterogeneous conflict relations between vehicles further
increase the number of feasible solutions and lead to state-
space explosion for the state-based methods, e.g., [29].

To this end, it is necessary to construct a new cooperative
driving strategy to overcome the above challenges and then
guarantee computational efficiency and global optimality.

IV. OPTIMAL COOPERATIVE DRIVING DESIGN

In this section, we will reformulate problem (6) based
on dynamic programming to implement optimal cooperative
driving with polynomial computational complexity. The key
idea is to construct a small-size state space to describe
the complete solution space of the large-scale planning
problem (6) and then search for the globally optimal solution
by dynamic programming. An intersection scenario with five
vehicles shown in Fig. 3(a) is taken as an example to introduce
our method.

The rest of Section IV is organized as follows. The state
space describing the complete solution space is constructed
in Section IV-A, Section IV-B and Section IV-C. Section IV-D
introduces the method to search the globally optimal solution
inside the constructed state space. In Section IV-E, state space
construction process and solution searching method are inte-
grated into one overall optimal cooperative driving algorithm
to save the computational resources.

A. State Definition

The problem of planning vehicle sequence passing through
the conflict area is equivalent to sequentially assign the right
of way for each vehicle to move into the conflict area. Thus,
the problem (6) can be reformulated as a multi-stage decision
process, where the vehicles are sequentially added to the
current candidate sequence and only one vehicle is tackled
in each stage. Then, as shown in Fig. 3(b), state variable is
defined to describe the assignment of the right of way, i.e.,

sr

(
n1 n2
n3 n4

)
, (7)

where n1, n2, n3 and n4 denote the accumulated number of
vehicles added to current candidate sequence in lane 1, 2,
3 and 4 up to current state, respectively. r denotes the lane
identity of the vehicle which obtains the right of way at current
state. For instance, s3

(
1 0
2 0

)
denotes that one vehicle in lane 1

and two vehicles in lane 3 have been tackled up to current
state. In addition, the vehicle with the right of way at current
state can be exactly specified. For instance, s3

(
1 0
2 0

)
denotes

that the second vehicle in lane 3 (r = 3, nr = 2) has the right
of way at the current state, i.e., C AVD .

B. Basic State Transition

State transition is used to describe the transition of the
right of way between vehicles. We use the lane identity as
the decision variable u (u ∈ {1, 2, 3, 4}) to determine which
lane has obtained the right of way at the current stage so
that one vehicle on the corresponding lane is added to the
candidate sequence. The state transition function emerges after
introducing the state variable and decision variable, i.e.,

sr
( n1 n2

n3 n4

) = g
(

sr �
(

n�
1 n�

2
n�

3 n�
4

)
, u

)
, (8)

where sr �
(

n�
1 n�

2
n�

3 n�
4

)
is the predecessor state of sr

( n1 n2
n3 n4

)
. The

function g(·) denotes the state transition function, i.e., if u = i ,
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Fig. 3. Optimal cooperative driving strategy applied to a simple signal-free intersection scenario with five vehicles. Fig. 3(a) presents the studied scenario.
Fig. 3(b) gives the definition of state variable. Fig. 3(c) presents a part of state space under basic state transition, where many states and state transitions are
omitted for simplicity. Fig. 3(d) illustrates how to reconstruct the state transitions. Fig. 3(e) illustrates the decision-making process.

we have ni = n�
i + 1, r = i and other parameters of the state

variable stay the same. For example, as shown in Fig. 3(c),
the initial state s0

(
0 0
0 0

)
connects to different successor states

according to different values of the decision variable.
A new vehicle will be assigned an arrival time to the conflict

area if it obtains the right of way during a state transition.
Thus, the objective value J varies with state transition. As for
the conflict pairs of vehicles, the arrival time assigned to
the vehicle specified by current state is always larger than
that assigned to the vehicle specified by its predecessor state,
because the vehicle specified by the predecessor state has the
priority over the vehicle specified by current state to enter
the conflict area during each state transition. Therefore, the
objective value J up to current state is exactly equal to the
time assigned to the vehicle specified by current state, i.e.,

J (s) = tassign,s, (9)

where J (s) denotes the objective value J up to state s,
and tassign,s denotes the arrival time assigned to the vehicle
specified by state s. Then, considering constraints (2)-(5), the
recurrence function of objective value J during state transition
can be summarized as

J (s) = tassign,s

= max(tmin,s, tassign,s � + �T )

= max(tmin,s, J
(
s�) + �T ), (10)

where tmin,s denotes the minimal arrival time constrained by
vehicle dynamics of the vehicle specified by state s, and s� is

the predecessor state of s. If the vehicles specified by s and
s� are in the same lane, �T = �t,1, otherwise, �T = �t,2.

According to Eq. (10), we can find that the objective value
J (s) is directly determined by its predecessor state s� and
has nothing with other states before the predecessor state.
In other words, state transition satisfies Markov property when
there exist conflicts between the vehicles specified by the
corresponding two states, which is a necessary requirement of
using dynamic programming to solve a multi-stage decision
problem [36], [37].

However, as for the conflict-free pairs of vehicles presented
in Section III-C, the objective value J up to current state
has nothing with that of its predecessor state, because they
are not conflict with each other. As shown in Fig. 3(d),
C AVC specified by s1

(
1 1
2 0

)
and C AVD specified by s3

(
0 1
2 0

)
are the so-called conflict-free pairs so that the arrival time
assigned to C AVC is determined by that assigned to the
vehicles other than C AVD . In other words, J

(
s1

(
1 1
2 0

))
is not

determined by its predecessor state s3
(

0 1
2 0

)
, but by the states

before s3
(

0 1
2 0

)
. Therefore, the state transition cannot satisfy

Markov property and thus invalidates dynamic programming
in this problem. To this end, it is necessary to reconstruct
state transition function to overcome the challenges from
heterogeneous conflict relations.

C. State Transition Reconstruction

In this subsection, we will reconstruct the state transition
function to keep Markov property then reactivate dynamic pro-
gramming for cooperative driving at signal-free intersections.
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To keep Markov property, the non-conflict transitions
(i.e., the transitions which connect the states that are not
in conflict with each other) should be removed from the
state space. To guarantee global optimality, we need to build
new transitions for the corresponding states to completely
describe the assignment of the right of way. Firstly, we need
to find the non-conflict transitions in state space and then,
for each non-conflict state transition, we need to remove
it and connect current state with all predecessor states of
its original predecessor state. Repeat the above steps until
there is no non-conflict transition in state space. The recon-
struction strategy guarantees that each state transition repre-
sents one kind of conflict between vehicles and all possi-
ble assignments of the right of way are presented in state
space.

Here we illustrate our key idea in Fig. 3(d) and will elab-
orate the implementation algorithm in Section IV-E. Firstly,
we find that the transition between state s3

(
0 1
2 0

)
and s1

(
1 1
2 0

)
is

the so-called non-conflict transition as C AVD and C AVC can
enter the conflict area at the same time, and thus we need to
remove this transition and establish new transitions for s1

(
1 1
2 0

)
.

Secondly, the non-conflict transition between s3
(

0 1
2 0

)
and

s1
(

1 1
2 0

)
is removed, and s1

(
1 1
2 0

)
connects to the predecessor

states of s3
(

0 1
2 0

)
, i.e., s3

(
0 1
1 0

)
and s2

(
0 1
1 0

)
. Thirdly, we find

that one of the reproduced transitions is still the non-conflict
transition, i.e., the transition between s3

(
0 1
1 0

)
and s1

(
1 1
2 0

)
.

Finally, the non-conflict transition between s3
(

0 1
1 0

)
and s1

(
1 1
2 0

)
is removed, and s1

(
1 1
2 0

)
connects to the predecessor state

of s3
(

0 1
1 0

)
, i.e., s2

(
0 1
0 0

)
. Therefore, the non-conflict transition

between s3
(

0 1
2 0

)
and s1

(
1 1
2 0

)
is modified to guarantee Markov

property and global optimality. Compared with the basic state
transition in Section IV-B, the reconstruction strategy has the
following new properties.

Property 1 (The State Transition is Not Just Between the
Adjacent Stages): Thus, one state transition does not neces-
sarily represent only one vehicle that obtains the right of way
while it may represent a group of vehicles in which there is no
conflict of different directions. As shown in Fig. 3(d) step 4, the
transition between s2

(
0 1
0 0

)
and s1

(
1 1
2 0

)
represents that C AVA,

C AVD and C AVC are assigned with the right of way during
current state transition.

Property 2 (Removing One State Transition May Reproduce
Multiple Transitions): It increases the number of transitions in
the reconstructed state space, and theoretical analysis about
this change will be presented in Section V.

By Property 1, the recurrence function of objective value J
needs to be modified based on the reconstructed transitions.
The objective value J up to current state should consider
the assigned arrival time of a group of vehicles specified
by the corresponding transition rather than only one vehicle.
We assume that state s� is the predecessor state of s and use
G to denote the set of vehicle identity of a group of vehicles
that are assigned the right of way during the transition from
s� to s. For each vehicle in G, the method to assign arrival
time is

tassign,k = max(tmin,k, J (s�) + �T , tassign,k� + �t,1), (11a)

k, k � ∈ G, (11b)

where C AVk� is physically ahead of C AVk in the same lane.
If the vehicles specified by s and s� are in the same lane,
�T = �t,1, otherwise, �T = �t,2. Then, we can obtain the
objective value J up to current state, i.e.,

J (s) = max
k∈G

tassign,k . (12)

Based on (11a), (11b) and (12), we can find that J (s)
is determined by its predecessor state s� and has nothing
with other states before state s�, i.e., the reconstructed state
transition guarantee Markov property. For example, as shown
in Fig. 3(d), the state transition between s2

(
0 1
0 0

)
and state

s1
(

1 1
2 0

)
represents that C AVA, C AVD and C AVC are assigned

with the arrival time at this time, i.e.,

tassign,A = max
(
tmin,A, J

(
s2

(
0 1
0 0

)) + �t,2
)
, (13)

tassign,D = max(tmin,D, tassign,A + �t,1), (14)

tassign,C = max
(
tmin,C , J

(
s2

(
0 1
0 0

)) + �t,2
)
, (15)

J
(
s1

(
1 1
2 0

)) = max(tassign,A, tassign,D, tassign,C). (16)

According to (13)-(16), it can be found that J
(
s1

(
1 1
2 0

))
is

determined by J
(
s2

(
0 1
0 0

))
and has nothing with other states

before s2
(

0 1
0 0

)
.

Based on the aforementioned descriptions, the constructed
state space has following properties.

Property 3: There are many phenomena where different
vehicle sequences reach the same state in the state space by
determining the accumulated assigned number of vehicles in
the specific lane, which leads to that the size of the state space
is much smaller compared with those methods in which the
vehicle sequence is directly used as the state [29], [34].

Property 4: By determining the accumulated assigned num-
ber of vehicles in the specific lane, vehicles in the same lane
always comply with the physical constraints (3) during each
state transition, which leads to that the infeasible sequences
that violate the physical constraints are directly eliminated
and the state space contains only all feasible solutions.

Property 3 and Property 4 make it possible to describe
the complete solution space of the large-scale planning prob-
lem (6) utilizing a small-size state space. Theoretical analysis
about the size of the state space will be presented in Section V.

D. Decision-Making Process

In this subsection, we will introduce the method to
search the globally optimal solution in the constructed state
space.

As described in Section IV-C, state transition satisfy Markov
property in the state space. Thus, the principle of optimality
can be adopted to search the globally optimal solution.

Lemma 1 (The Principle of Optimality): if the optimal path
of states passes through a particular state S in the state space,
the partial path from the initial state to state S must also be
the optimal path from the initial state to state S [36].

According to Eq. (11a)-(12) and Fig. 3(e), the objective
value is updated and the corresponding vehicles can get the
assigned arrival time during each state transition. If there
is only one predecessor state of current state, the objective
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Algorithm 1: Optimal Cooperative Driving Algorithm
Input: Driving states of all vehicles within control area.
Output: Optimal arrival time assigned to each vehicle.

1 for each i ∈ [1, N] do
2 for each state s1

( n1 n2
n3 n4

)
in stage i do

3 /* Determine Candidate Vehicles. */
4 N1 = 1, N3 = 0.
5 j = n1.
6 while V1, j−1 has the same intention as V1,n1 do
7 j = j − 1, N1 = N1 + 1.
8 end
9 j = n3.

10 while V3, j has the same intention as V1,n1 do
11 j = j − 1, N3 = N3 + 1.
12 end
13 /* Five Kinds of Predecessor States. */
14 Connect s1

( n1 n2
n3 n4

)
with s1

(
n1−1 n2

n3 n4

)
.

15 for each n3 ∈ [1, N3] do

16 Connect s1
( n1 n2

n3 n4

)
with s1

(
n1−N1 n2
n3−n3 n4

)
.

17 end
18 for each n1 ∈ [1, N1] do

19 Connect s1
( n1 n2

n3 n4

)
with s3

(
n1−n1 n2
n3−N3 n4

)
.

20 end
21 for each n1 ∈ [1, N1] and each n3 ∈ [0, N3] do

22 Connect s1
( n1 n2

n3 n4

)
with s2

(
n1−n1 n2
n3−n3 n4

)
.

23 end
24 for each n1 ∈ [1, N1] and each n3 ∈ [0, N3] do

25 Connect s1
( n1 n2

n3 n4

)
with s4

(
n1−n1 n2
n3−n3 n4

)
.

26 end
27 Update the objective value for each transition.
28 Record the optimal predecessor state.
29 end
30 Other states can be tackled in similar way if r �= 1.
31 end
32 Obtain the optimal passing sequence via backtracking.
33 Assign the optimal arrival time for each vehicle.

value of current state is determined by that of the unique
predecessor state. However, if there are multiple predecessor
states, we need to find the optimal objective value of current
state according to Lemma 1, i.e.,

J ∗ = min
i∈S� J i , (17)

where S� denotes the set of all predecessor states of current
state. J i denotes the candidate objective value of current
state determined by its i th predecessor state, and J ∗ is the
optimal objective value of current state. According to Eq. (17),
we can get the optimal objective value and record the optimal
predecessor state of each state.

Based on the above descriptions, it can be easily concluded
that the minimal objective value among all terminal states in
the last stage is the globally optimal objective value of the
problem (6). Then, the optimal sequence can be obtained via a

Fig. 4. An illustration of how to find all predecessor states for each state in
Algorithm 1. There are five kinds of predecessor states.

backtracking search from the optimal terminal state according
to the recorded optimal predecessor state of each state.

E. Algorithm for Implementation

In the above subsections, we introduce our method in three
steps for easier understanding, i.e., basic state transition, state
transition reconstruction and decision-making process. For
implementation, as commonly used in dynamic programming,
these three steps can be integrated into one algorithm to
save computational resources. Specifically, instead of con-
structing the state space under basic state transition and then
reconstructing the non-conflict transitions, we can directly
construct the feasible state transitions by combining the basic
state transition function and reconstruction strategy. At the
same time, the currently optimal objective value of each
state can be updated during each state transition. It avoids
repeated computation, and the integrated algorithm is shown
in Algorithm 1, where Vi, j denotes the j th vehicle in lane i . N
denotes the total number of vehicles within the control area.
The driving intention refers to whether the vehicle is going
straight or turning left.

To obtain the globally optimal solution, for each state
sr

( n1 n2
n3 n4

)
in the state space, we need to find all possible

predecessor states and then obtain the optimal J
(
sr

( n1 n2
n3 n4

))
and the optimal predecessor state of sr

( n1 n2
n3 n4

)
, as described

in Algorithm 1. To reach this goal, we firstly need to
determine the candidate vehicles that may obtain the right of
way during the state transitions connecting to state sr

( n1 n2
n3 n4

)
according to the conflict relations between vehicles. Then,
all the predecessor states of sr

( n1 n2
n3 n4

)
can be divided into

five categories according to the lane identity of the vehicle
specified by each predecessor state. At the same time, the
currently optimal J

(
sr

( n1 n2
n3 n4

))
is updated during each state

transition, and we can obtain the optimal predecessor state of
sr

( n1 n2
n3 n4

)
. Finally, all the states in the state space can be tackled

in the similar way and thus the optimal passing sequence can
be exported through backtracking search.

Taking Fig. 4 as the example to illustrate how to find all
possible predecessor states of state s1

( n1 n2
n3 n4

)
. In this case,

there are at most N1 vehicles in lane 1 and N3 vehicles
in lane 3 that may obtain the right of way during the state
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transitions connecting to s1
( n1 n2

n3 n4

)
, because there is no conflict

of different directions among these vehicles. Then, there
are five kinds of predecessor states of s1

( n1 n2
n3 n4

)
: 1� if the

vehicle specified by the predecessor state is in lane 1 and
only one vehicle in lane 1 can obtain the right of way, the
predecessor state is s1

(
n1−1 n2

n3 n4

)
. 2� if the vehicle specified by

the predecessor state is in lane 1 and both the vehicles in lane 1
and lane 3 can obtain the right of way, the predecessor states
can be described as s1

(
n1−N1 n2
n3−n3 n4

)
, where n3 ∈ [1, N3]. 3� if

the vehicle specified by the predecessor state is in lane 3, the
predecessor states can be described as s3

(
n1−n1 n2
n3−N3 n4

)
, where

n1 ∈ [1, N1]. 4� if the vehicle specified by the predecessor
state is in lane 2, the predecessor states can be described as
s2

(
n1−n1 n2
n3−n3 n4

)
, where n1 ∈ [1, N1] and n3 ∈ [0, N3]. 5� if

the vehicle specified by the predecessor state is in lane 4, the
predecessor states can be described as s4

(
n1−n1 n2
n3−n3 n4

)
, where

n1 ∈ [1, N1] and n3 ∈ [0, N3].

V. ANALYSIS OF COMPUTATIONAL COMPLEXITY

In this section, both the size of the constructed state space
and the computational complexity of the proposed strategy are
proved through theoretical analysis.

A. Analysis of Number of States

The theorem is proposed for the number of states.
Theorem 1: The total number of states is O(N4), where N

denotes the total number of vehicles within control area.
Proof: See Appendix I.

By Theorem 1, the number of states is a quartic polynomial
with the number of vehicles. Thus, the size of state space
grows slowly with the increasing number of vehicles.

B. Analysis of Number of Transitions

By Property 2 in Section IV-C, it can be concluded that
the number of transitions varies with the conflict relations
between vehicles within the conflict area. Thus, there exist
the lower and upper bounds on the number of state transitions:
if all the vehicles within the control area are in conflict with
each other, the number of transitions reaches the lower bound,
which is equal to that of the state space constructed under
basic state transition; if each vehicle within the control area
does not conflict with any vehicle on the opposite lane (e.g., all
vehicles within the control area are with straight movements.),
the number of transitions reaches to the upper bound, because
each state has the largest number of predecessor states in such
case. Thus, two theorems are proposed for the number of
transitions.

Theorem 2: The lower bound on the number of transitions
is O(N4), where N denotes the total number of vehicles within
control area.

Proof: See Appendix II-A.
Theorem 3: The upper bound on the number of transitions

is O(N6), where N denotes the total number of vehicles within
control area.

Proof: See Appendix II-B.

By Theorem 2-3, both the lower and upper bounds on the
number of state transitions are polynomial with the number of
vehicles within the control area.

C. Analysis of Computational Time Complexity

The theorem is proposed for computational complexity.
Theorem 4: The proposed strategy has the polynomial-time

complexity of computation, which has a lower bound O(N4)
and an upper bound O(N6), where N denotes the total number
of vehicles within control area.

Proof: See Appendix III.
By Theorem 4, the proposed optimal cooperative driving

strategy can reduce the time complexity of computation from
exponential to a small-degree polynomial.

Remark 1: In Appendix III, we get that each state transition
will produce one computation with constant time. Then, it can
be concluded that the time complexity of the proposed strategy
is close to the lower bound in most cases, since there are many
conflicts between vehicles in most cases and it is hard to satisfy
the condition that each vehicle within the control area does not
conflict with any vehicle on the opposite lane.

VI. SIMULATION RESULTS

A. Simulation Settings

We design two kinds of simulations to verify the perfor-
mance of the proposed optimal strategy. The first simulation
aims to validate the global optimality of the proposed strat-
egy. The second simulation aims to further demonstrate the
performance of the proposed strategy in a continuous traffic
process.

In the simulations, we select the intersection shown in Fig. 1
as the studied scenario, where the length of control area lc is
set as 250m. For the input lane of each direction, we assume
that half of the vehicles will turn left and half will go straight.
As suggested in [22], [26], the minimal safe gaps �t,1 and
�t,2 to avoid collisions in conflict areas are set as 1.5s and
2s, respectively. The vehicle dynamics parameters amax, amin,
vmax, vmin, and vc are set as 3m/s2, −5m/s2, 15m/s, 0m/s,
and 10m/s, respectively. In addition, all simulations are carried
out on the Visual Studio platform in a personal computer with
an i7 CPU and a 16 GB RAM.

There are three kinds of performance indices evaluated in
the simulations: 1� total passing time: it refers to the total
time when all vehicles within the control area have passed the
conflict area. In fact, the total passing time is exactly equal
to the objective value of problem (6) and can be calculated
by (1b). 2� traffic throughput: it refers to the total number of
vehicles that have passed the conflict area in a specified period
of time, which is utilized to evaluate the traffic efficiency in
a continuous traffic process. 3� average computation time: it
refers to the average computation time that is taken in a one-
time planning procedure to get the vehicle sequence, which is
used to evaluate the computational efficiency of strategies.

There are three strategies selected as the comparison strate-
gies in the simulations: 1� first-in-first-out (FIFO) strategy:
similar to [22], [34], [35], the typical FIFO strategy is utilized
in the simulations, where the vehicles move into the conflict
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Fig. 5. The total passing time of different strategies with respect to the
number of vehicles.

TABLE II

AVERAGE COMPUTATION TIME OF DIFFERENT STRATEGIES

area following the sequence they enter the control area. 2�
enumeration-based strategy: it refers to the strategy that can
obtain the globally optimal solution through enumerating all
possible solutions, which is utilized to evaluate the global
optimality of the proposed strategy. 3� rule-based strategy:
as presented in [45], the rule-based strategy can dynamically
reschedule the sequence of vehicles when a new vehicle enters
into the control area, which has a significant advantage over
FIFO strategy in improving traffic efficiency.

B. Global Optimality Analysis

In this simulation, we design an intersection scenario with α
vehicles (α ∈ [5, 24]) that randomly distributed in the control
area to verify the global optimality of the proposed strategy.
Three strategies are applied in this scenario, i.e., FIFO strategy,
enumeration-based strategy and the proposed strategy. The
total passing time and average computation time are utilized
as the performance indices in this simulation. For each α,
we simulate 20 times to take the average total passing time and
computation time as shown in Fig. 5 and TABLE II. It should
be pointed out that the computation time of enumeration-
based strategy becomes extremely large when α > 18. Thus,

TABLE III

COMPARISON RESULTS OF DIFFERENT STRATEGIES

enumeration-based strategy is only applied in the scenarios
where α ≤ 18 in this simulation.

According to Fig. 5, we can find that the total passing
time of the proposed strategy is exactly equal to that of
the enumeration-based strategy, which can obtain the globally
optimal solution. Compared with the FIFO strategy, the total
passing time of the proposed strategy is significantly decreased
especially when the traffic volume is large. Furthermore,
according to TABLE II, the average computation time of
the proposed strategy is short enough and can realize on-
line computation in cooperative driving problem. However, the
enumeration-based strategy is computationally intractable for
a real-time implementation especially when there are a large
number of vehicles within the control area.

Consequently, the proposed strategy can obtain the globally
optimal solution with a limited computation time.

C. Comparison Results in Continuous Traffic Process

In this simulation, the performance of the proposed strategy
is further validated in a continuous traffic process. Similar
to [22], [34], we assume that the vehicles arrive in a Poisson
Process at each input lane, and the range of the average arrival
rate is set as [400, 900] veh/(lane · h). For each parameter
setting, we simulate a 10-minute study period (after a 2-minute
warm up) to collect the numerical results. In the continuous
traffic process, the planning procedure is triggered when a new
vehicle moves into the control area to reschedule the sequence
of vehicles within the control area. In addition, similar to the
relevant studies [26], [34], we select the method presented
in [46] to obtain the trajectory for each vehicle based on
the assigned arrival time of vehicles. As validated in [46],
this trajectory planning method can significantly reduce the
emissions according to the pre-assigned arrival time.

Note that it is an extremely time-consuming process to
obtain the globally optimal solution using the existing opti-
mal strategies. Thus, the enumeration-based strategy is not
adopted in this simulation and we select the FIFO strategy for
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Fig. 6. Throughput of different strategies with respect to the arrival rate.

comparisons. In addition, the rule-based strategy [45] is also
utilized as the comparison strategy to verify the advantages
of our method. In this simulation, the traffic throughput and
average computation time are selected as the performance
indices.

According to TABLE III and Fig. 6, we can find that the
proposed strategy outperforms the FIFO strategy and the rule-
based strategy in terms of traffic throughput under all traffic
demands. Moreover, the average computation time of the
proposed strategy is short enough (< 0.1s) in all simulations,
which can fulfill the real-time computation requirement for
real-world implementation.

VII. CONCLUSION

In this paper, we study the problem of cooperative driving at
signal-free intersections, aiming to obtain the globally optimal
solution with an efficient computation time. Taking advantage
of the conflict relations between vehicles, we show that the
large-scale planning problem can be reformulated as a small-
size multi-stage decision problem using the idea of dynamic
programming, which can reduce the time complexity from
exponential to a small-degree polynomial. Multiple simula-
tion results and theoretical analysis jointly demonstrate the
promising performance of the proposed strategy in terms
of improving traffic efficiency and reducing computational
complexity.

In future work, some interesting aspects are also worth fur-
ther investigation. For instance, cooperative driving at a multi-
lane intersection can be considered based on the approach
presented in this paper; the scenarios where the human-driven
vehicles coexist with CAVs can also be discussed [47], [48].

APPENDIX I
PROOF OF THEOREM 1

Proof: Recalling that the number of vehicles on lane 1,
2, 3 and 4 is denoted by n̂1, n̂2, n̂3 and n̂4 respectively, and
assuming that n̂1 > 0, n̂2 > 0, n̂3 > 0 and n̂4 > 0. To simplify
the descriptions, we give a symbolic function, i.e.,

�(x) =
{

0 x = 0

1 x �= 0.

Then, the number of states in the solution space can be ana-
lyzed by categories. As for �(n1)+�(n2)+�(n3)+�(n4) = 0,
there is only one state satisfying condition, i.e., the initial state
in stage 0. As for �(n1) + �(n2) + �(n3) + �(n4) = 1, there
are (n̂1+n̂2+n̂3+n̂4) states satisfying condition, e.g., s1

(
1 0
0 0

)
,

s1
(

2 0
0 0

)
, s2

(
0 1
0 0

)
. As for �(n1) + �(n2) + �(n3) + �(n4) = 2,

there are (2n̂1n̂2 + 2n̂1n̂3 + 2n̂1n̂4 + 2n̂2n̂3 + 2n̂2n̂4 + 2n̂3n̂4)
states satisfying condition, e.g., s1

(
1 1
0 0

)
, s1

(
1 0
1 0

)
, s2

(
0 1
1 0

)
.

As for �(n1) + �(n2) + �(n3) + �(n4) = 3, there are
(3n̂1n̂2n̂3 + 3n̂1n̂2n̂4 + 3n̂1n̂3n̂4 + 3n̂2n̂3n̂4) states satisfying
condition, e.g., s1

(
1 1
1 0

)
, s1

(
1 1
0 1

)
, s2

(
0 1
1 2

)
. As for �(n1) +

�(n2) + �(n3) + �(n4) = 4, there are (4n̂1n̂2n̂3n̂4) states
satisfying condition, e.g., s1

(
1 1
1 1

)
, s1

(
1 1
2 1

)
, s2

(
3 1
1 2

)
. Based on

the above descriptions, we can obtain the total number of states
Ns in the state space as

Ns = 4n̂1n̂2n̂3n̂4 + 3(n̂1n̂2n̂3 + n̂1n̂2n̂4 + n̂1n̂3n̂4

+ n̂2n̂3n̂4) + 2(n̂1n̂2 + n̂1n̂3 + n̂1n̂4 + n̂2n̂3

+ n̂2n̂4 + n̂3n̂4) + n̂1 + n̂2 + n̂3 + n̂4 + 1.

Assuming that the total number of vehicles in control area
is N(N ≥ 4) and n̂1 = n̂2 = n̂3 = n̂4 = N

4 , we have

Ns = N4

64
+ 3N3

16
+ 3N2

4
+ N + 1.

It is obvious that the number of states is O(N4).

APPENDIX II
PROOF OF THEOREM 2-3

Recalling that the number of vehicles on lane 1, 2, 3 and 4
is denoted by n̂1, n̂2, n̂3 and n̂4 respectively, and assuming
that n̂1 > 0, n̂2 > 0, n̂3 > 0 and n̂4 > 0.

A. Proof of Theorem 2

Proof: The number of transitions reaches the lower bound
Nl

t under basic state transition. Usually, each state has four
predecessor states except the initial state, i.e.,

Nl
t,max = 4(Ns − 1),

where Nl
t,max denotes the possible maximum of transitions

under basic state transition. However, there exist several infea-
sible transitions, which need to be subtracted from Nl

t,max.
As for such states as s1

( n1 n2
n3 n4

)
, there are generally four

kinds of predecessor states, i.e., s1
(

n1−1 n2
n3 n4

)
, s2

(
n1−1 n2

n3 n4

)
,

s3
(

n1−1 n2
n3 n4

)
, and s4

(
n1−1 n2

n3 n4

)
. We now discuss whether these

predecessor states exist in state space. 1� if n1 = 1, state
s1

(
n1−1 n2

n3 n4

)
is infeasible, where n2 ∈ [0, n̂2], n3 ∈ [0, n̂3]

and n4 ∈ [0, n̂4]. Thus, there are [(n̂2 + 1)(n̂3 + 1)(n̂4 + 1)]
states belonging to this category. 2� if n2 = 0, s2

(
n1−1 n2

n3 n4

)
is

infeasible, where n1 ∈ [1, n̂1], n3 ∈ [0, n̂3] and n4 ∈ [0, n̂4].
Thus, there are [n̂1(n̂3 + 1)(n̂4 + 1)] states belonging to
this category. 3� if n3 = 0, s3

(
n1−1 n2

n3 n4

)
is infeasible, where

n1 ∈ [1, n̂1], n2 ∈ [0, n̂2] and n4 ∈ [0, n̂4]. Thus, there are
[n̂1(n̂2+1)(n̂4+1)] states belonging to this category. 4� if n4 =
0, s4

(
n1−1 n2

n3 n4

)
is infeasible, where n1 ∈ [1, n̂1], n2 ∈ [0, n̂2]

and n3 ∈ [0, n̂3]. Thus, there are [n̂1(n̂2 + 1)(n̂3 + 1)] states
of this category. In summary, as for such states as s1

( n1 n2
n3 n4

)
,
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the number of infeasible transitions Nt,in f,1 that need to be
subtracted from Nl

t,max is

Nt,in f,1 = (n̂2 + 1)(n̂3 + 1)(n̂4 + 1) + n̂1(n̂3 + 1)(n̂4 + 1)

+ n̂1(n̂2 + 1)(n̂4 + 1) + n̂1(n̂2 + 1)(n̂3 + 1)

Similarly, as for such states as s2
( n1 n2

n3 n4

)
, s3

( n1 n2
n3 n4

)
, and

s4
( n1 n2

n3 n4

)
, the number of transitions that need to be subtracted

from Nl
t,max is

Nt,in f,2 = (n̂1 + 1)(n̂3 + 1)(n̂4 + 1) + n̂2(n̂3 + 1)(n̂4 + 1)

+ n̂2(n̂1 + 1)(n̂4 + 1) + n̂2(n̂1 + 1)(n̂3 + 1),

Nt,in f,3 = (n̂1 + 1)(n̂2 + 1)(n̂4 + 1) + n̂3(n̂2 + 1)(n̂4 + 1)

+ n̂3(n̂1 + 1)(n̂4 + 1) + n̂3(n̂1 + 1)(n̂2 + 1),

Nt,in f,4 = (n̂1 + 1)(n̂2 + 1)(n̂3 + 1) + n̂4(n̂2 + 1)(n̂3 + 1)

+ n̂4(n̂1 + 1)(n̂3 + 1) + n̂4(n̂1 + 1)(n̂2 + 1).

In addition, there are four states that directly connect to the
initial state, i.e., s1

(
1 0
0 0

)
, s2

(
0 1
0 0

)
, s3

(
0 0
0 1

)
and s4

(
0 0
0 1

)
, which

produces four special transitions. Therefore, the lower bound
is summarized as

Nl
t = Nl

t,max − Nt,in f,1 − Nt,in f,2 − Nt,in f,3 − Nt,in f,4 + 4

= 16n̂1n̂2n̂3n̂4 + 8(n̂1n̂2n̂3 + n̂1n̂2n̂4 + n̂1n̂3n̂4+n̂2n̂3n̂4)

+ 2(n̂1n̂2 + n̂1n̂3 + n̂1n̂4 + n̂2n̂3 + n̂2n̂4 + n̂3n̂4)

− 2(n̂1 + n̂2 + n̂3 + n̂4) + 4.

Assuming that the total number of vehicles in control area
is N(N ≥ 4) and n̂1 = n̂2 = n̂3 = n̂4 = N

4 , we have

Nl
t = N4

16
+ N3

2
+ 3N2

4
− 2N + 4.

Thus, the lower bound on number of transitions
is O(N4).

B. Proof of Theorem 3

Proof: According to Property 2 in Section IV-C, we know
that removing one state transition may reproduce multiple
transitions which do not connect the states in adjacent stages.
Thus, the total number of transitions is

Nt = Nl
t − Nt,rem + Nt,rep, (18)

where Nt,rem denotes the number of removed transitions, and
Nt,rep denotes the number of reproduced transitions.

According to Property 1 in Section IV-C, the reproduced
transitions represent a group of vehicles which do not con-
flict with each other. Firstly, we aim to find the number
of the reproduced transitions that connect to a particular

state sr

(
n0

1+δn1 n2

n0
3+δn3 n4

)
, where we assume that the nth

1 (nth
1 ∈

[n0
1 + 1, n0

1 + δn1]) vehicle on lane 1 has no conflict with the
nth

3 (nth
3 ∈ [n0

3 + 1, n0
3 + δn3 ]) on lane 3. Thus, there are δn1δn3

reproduced transitions connecting to state sr

(
n0

1+δn1 n2

n0
3+δn3 n4

)
when

n2, n4 and r are fixed. Secondly, according to Section V-B,
the total number of transitions reaches the upper bound Nu

t
when each vehicle within the control area does not conflict
with any vehicle on the opposite lane. In such case, we aim

to find the total number of reproduced transitions for state

sr

(
n0

1+δn1 n2

n0
3+δn3 n4

)
, where δn1 and δn3 are set as different values.

Obviously, we have δn1 ∈ [1, n̂1] and δn3 ∈ [1, n̂3]. Thus, the
total number of the reproduced transitions connecting to this
kind of states where n2, n4 and r are fixed is

n̂1∑
δn1 =1

n̂3∑
δn3 =1

δn1δn3 = n̂1(n̂1 + 1)n̂3(n̂3 + 1)

4
.

Then, we consider that n2, n4 and r can set as different
values. As for n2 ∈ [1, n̂2] and n4 ∈ [1, n̂4], r ∈ {2, 4}. As for
n2 = 0 and n4 ∈ [1, n̂4], r = 4. As for n4 = 0 and n2 ∈
[1, n̂2], r = 2. Therefore, for such states as sr

(
n0

1+δn1 n2

n0
3+δn3 n4

)
,

the total number of reproduced transitions Nt,rep,1 is

Nt,rep,1 = (2n̂2n̂4 + n̂2 + n̂4)
n̂1(n̂1 + 1)n̂3(n̂3 + 1)

4
.

Similarly, for such states as sr

(
n1 n0

2+δn2
n3 n0

4+δn4

)
, the total number

of reproduced transitions is

Nt,rep,2 = (2n̂1n̂3 + n̂1 + n̂3)
n̂2(n̂2 + 1)n̂4(n̂4 + 1)

4
.

In addition, there are (2n̂1n̂3+2n̂2n̂4) reproduced transitions
from the initial state to such states as sr

(
n1 0
n3 0

)
and sr

(
0 n2
0 n4

)
.

Based on above descriptions, we have

Nt,rep = Nt,rep,1 + Nt,rep,2 + 2n̂1n̂3 + 2n̂2n̂4. (19)

Furthermore, it is easy to obtain Nt,rem, i.e.,

Nt,rem = 2n̂1n̂3(n̂2 + 1)(n̂4 + 1) + 2n̂2n̂4(n̂1 + 1)(n̂3 + 1).

(20)

Finally, according to (18), (19) and (20), we can obtain the
upper bound on the number of transitions, i.e.,

Nu
t = Nl

t + (2n̂2n̂4 + n̂2 + n̂4)
n̂1(n̂1 + 1)n̂3(n̂3 + 1)

4

+ (2n̂1n̂3 + n̂1 + n̂3)
n̂2(n̂2 + 1)n̂4(n̂4 + 1)

4
+ 2n̂1n̂3 + 2n̂2n̂4

− 2n̂1n̂3(n̂2 + 1)(n̂4 + 1) − 2n̂2n̂4(n̂1 + 1)(n̂3 + 1).

Assuming that the total number of vehicles in control area
is N(N ≥ 4) and n̂1 = n̂2 = n̂3 = n̂4 = N

4 , we have

Nu
t = N6

4096
+ 3N5

1024
+ 15N4

256
+ 25N3

64
+ 3N2

4
− 2N.

Thus, the upper bound on number of transitions
is O(N6).

APPENDIX III
PROOF OF THEOREM 4

Proof: In Algorithm 1, for each state transition, we need
to calculate and update the objective value of current
state. To further reduce the complexity, instead of using
Eq. (11a)-Eq. (12), it is easy to obtain the objective value
according to the conflict relations between vehicles. Specif-
ically, if multiple vehicles can obtain the right of way during
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current state transition and these vehicles are divided into two
continuous queues in different lanes (e.g., Fig. 4), we just need
to calculate the arrival time assigned to the last vehicle in each
queue and then pick the maximum as the objective value, i.e.,

tassign,r,l = max
(
tassign,r, f + (Nr − 1)�t,1, tmin,r,l

)
,

tassign,o,l = max
(
tassign,o, f + (No − 1)�t,1, tmin,o,l

)
,

J = max
(
tassign,r,l , tassign,o,l

)
,

where lane o is the opposite lane of lane r . tassign,r,l and
tassign,o,l denote the arrival time assigned to the last vehicle
of the queue in lane r and lane o respectively. tassign,r, f and
tassign,o, f denote the arrival time assigned to the first vehicle
of the queue in lane r and lane o respectively. Nr and No

denote the size of the queue in lane r and laneo respectively.
tmin,r,l and tmin,o,l denote the minimal arrival time of the last
vehicle of the queue in lane r and lane o respectively.

Obviously, the time complexity of calculating the objective
value is a constant time for each transition, since the com-
putation time does not change with the size of the algorithm
input (i.e., the total number of vehicles). Therefore, based on
Theorem 2-3, it is obvious that the optimal cooperative driving
strategy has the polynomial-time complexity of computation,
which has a lower bound O(N4) and an upper bound O(N6),
where N denotes the number of vehicles.
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