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A B S T R A C T

Among the three major safety assessment methods (i.e., simulation, test track, and on-road test) for highly
automated driving systems (ADS), test tracks provide high fidelity and a safe and controllable testing environ-
ment. However, due to the lack of realistic background traffic, scenarios that can be tested in test tracks are
usually static and limited. To address this limitation, a new safety assessment framework is proposed in this
paper, which integrates an augmented reality (AR) testing platform and a testing scenario library generation
(TSLG) method. The AR testing platform generates simulated background traffic in test tracks, which interact
with subject ADS under test, to create a realistic traffic environment. The TSLG method can systematically
generate a set of critical scenarios under each operational design domain (ODD) and the critical scenarios
generated from the TSLG method can be imported into the AR testing platform. The proposed framework has
been implemented in the Mcity test track at the University of Michigan with a Level 4 ADS. Field test results
show that the proposed framework can accurately and efficiently evaluate the safety performance of highly ADS
in a cost-effective fashion. In the cut-in case study, the proposed framework is estimated to accelerate the
assessment process by ×9.87 104 times comparing to the on-road test approach.

1. Introduction

Safety assessment is a critical step in the development and deploy-
ment of highly automated driving systems (ADS). The assessment pro-
cedures for human-driven vehicles, such as Federal Motor Vehicle
Safety Standards (FMVSS) (Federal Motor Vehicle Safety Standards,
1999) and ISO 26,262 (Road Vehicles – Functional Safety) (ISO 26262,
2011), are not enough to evaluate ADS comprehensively. A high-level
(i.e., Level 3 or higher) ADS should be able to perform driving tasks
including perceiving the environment, planning the route, and ex-
ecuting planned trajectories without human drivers. Besides the vehicle
safety features defined in current standards, it is more important to
evaluate how an ADS interacts with the roadway environment as well
as other traffic participants in a safe and intelligent way. Due to the
high complexity of the naturalistic driving environment, there exist
millions of testing scenarios, which make this problem extremely
challenging and time-consuming. As implied in the 2018 “Automated
Vehicle 3.0″ document (Preparing for the Future of Transportation,
2018) and by the National Highway Traffic Safety Administration
(NHTSA) (Pilot Program for Collaborative Research on Motor Vehicles

with High or Full Driving Automation, 2018), vehicle-level perfor-
mance-based standards and testing procedures for highly ADS do not
exist today and are needed before any commercial ADS can be deployed
on public roads.

Currently, assessment of ADS is mainly performed in simulation, on
test tracks, and public roads (Thorn et al., 2018). Simulation is useful
for developing prototype models and testing of ADS at early stages.
Simulation is cost-efficient, but it is well known that modeling the exact
vehicle dynamics and road environment is challenging. Public roads
provide the most realistic testing environment, but mistakes an ADS
make on a public road can be expensive, dangerous, and even fatal (Liu
and Feng, 2018). At least four fatal crashes have been reported in the
past few years involving automatic driving functions (Favarò et al.,
2017). Testing on public roads is also inefficient. ADS would have to
drive hundreds of millions of miles to validate safety performance
(Kalra and Paddock, 2016). Comparing with simulation and public
roads, test tracks, in which subject ADS can be evaluated in a realistic
environment, have their unique advantages. First, testing ADS on
physical roadways and infrastructure (e.g., traffic signals and signs)
mitigates the fidelity issues in simulation. Second, the testing
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environment is more controlled and therefore, safer than public roads.
Third, corner testing scenarios that rarely happen on public roads (e.g.,
red-light running) can be “created” repeatedly in test tracks. Therefore,
the test efficiency can be improved. In the past few years, dozens of
closed-facilities are constructed around the world, among which Mcity
at the University of Michigan is one of the representatives (Anon,
2020).

Although the controlled environment of a test track brings benefits
such as improved safety and efficiency, it has two major limitations. To
effectively assess the safety performance of an ADS, besides the
roadway environment that a test track can provide, a dynamic traffic
environment is also critical. However, a test track merely provides
empty roadways, and introducing real vehicles as background traffic is
not only costly but also difficult to coordinate and control (Feng et al.,
2018). Without interactions with other road users, both types and
number of scenarios that can be tested are limited. To address this
limitation, hardware-in-the-loop (HIL) simulation approaches in-
corporate certain levels of physical hardware into the simulation with
simulated background vehicles (BVs) (Thorn et al., 2018). One example
is the vehicle-in-the-loop simulation, where a vehicle is placed on a
roller test bench, such as a chassis-dynamometer, to allow physical
actuations, while the vehicle remains static. However, the virtual road
environment sometimes cannot reflect accurate vehicle performances.
For example, vehicle’s braking performances can be affected by road
surface and weather conditions, which is critical in crash or near-crash
scenarios.

Second, even with BVs introduced in the test track, how to generate
a library of testing scenarios systematically, e.g., the maneuvers of BVs,
remains a big challenge. On public roads, testing scenarios are not
generated purposely but encountered naturally by the ADS under dif-
ferent routes, traffic patterns, and time of day. This is the exact reason
why the efficiency of on-road test is very low because most of the en-
countered scenarios are not critical and less challenging. The major
difficulty of generating scenarios in test tracks lies on how to guarantee
assessment accuracy (e.g., the same level of performance as on-road
test) with higher efficiency (e.g., fewer required testing miles than road
test). Most existing scenario generation approaches only focus on the
textual or graphic description of scenario categories (Feng et al.,
2020a). However, even for one scenario category under one operational
design domain (ODD), e.g., cut-in, there are millions of specific sce-
narios with different parameters, e.g., different cut-in ranges, range
rates, and cut-in angles of the BV. How to determine a set of critical
parameters given an ODD is the key to the problem. Yet, to the best of
our knowledge, there is no generic way of generating and identifying
such a set of critical parameters. Some studies (Hunger, 2017) enu-
merate and test all possible combinations of parameters. They may
work under low dimensional cases where the number of parameters is
limited. However, under higher dimensions, the number of combina-
tions explodes exponentially.

This paper proposes a new framework for assessing the safety per-
formance of highly ADS in test tracks, to address the abovementioned
two problems. For the first problem, an augmented reality (AR) testing
platform that combines a physical test track and a simulation en-
vironment is constructed. Movements of the real ADS in the physical
test track are synchronized in the simulation platform, and information
of virtual BVs generated in simulation is fed back to the real ADS. The
real ADS in the physical test track can interact with the virtual BVs as if
in a realistic traffic environment. Since the real vehicle is tested on real
roadways, exact vehicle dynamics and road environment is ensured,
which are critical for evaluating the safety performance of the ADS
accurately. Meanwhile, comparing with introducing real BVs, simulated
BVs can be easily controlled and manipulated in generating different
scenarios with less cost and safety concerns.

For the second problem, the testing scenario library generation
(TSLG) method, which was first proposed in our previous studies (Feng
et al., 2020a, 2020b), is applied to systematically generate safety-

critical scenarios in test tracks. A new definition of scenario criticality is
adopted and a critical scenario searching method is developed based on
importance sampling theory and optimization techniques. Different
from (Feng et al., 2020a, 2020b), where human driving models were
used as the surrogate model (SM) and only simulations were conducted,
this paper leverages a Level 4 ADS model as the SM to generate critical
scenarios, and tests a real ADS vehicle in the Mcity test track.

The major contributions of this paper are summarized as follows:

(1) Propose a new framework for the safety assessment of ADS in test
tracks, which integrates the augmented reality testing platform and
the testing scenario library generation method.

(2) Provide further validation of the theoretical findings in (Feng et al.,
2020a) via test tracks. Field test results show that, by using the
high-level ADS model as the SM to generate the scenario library, the
ADS can be evaluated accurately with a further reduced number of
required tests.

(3) Provide an exemplar demonstration of testing ADS from simulations
to test tracks using mixed reality (see (Fremont et al., 2020) for
another example), which is a promising direction for testing the
ADS with the integration of different testing venues.

The rest of this paper is organized as follows. Section 2 introduces
the overall framework. Section 3 describes the TSLG method. The im-
plementation of the testing platform is presented in Section 4. The field
tests and the results are analyzed in Section 5. Finally, Section 6 con-
cludes the paper.

2. Overview of the ADS assessment framework

An overview of the proposed assessment framework is illustrated in
Fig. 1. The framework includes four major steps, i.e., scenario de-
scription, metric design, library generation, and ADS evaluation. The
scenario description step chooses the decision variables of scenarios
given an ODD. Then the metric design step defines a quantitative index
(e.g., accident rate) to represent safety. In the library generation step, a
set of critical scenarios (i.e., the library) is obtained. The core idea is to
first define scenario criticality and then search for scenarios with higher
criticality values. The scenario criticality is measured by both maneuver
challenge and exposure frequency. An SM is constructed to estimate the
maneuver challenge of each scenario. In the ADS evaluation step,
testing scenarios are sampled from the generated library, and then the
sampled scenarios are imported to the AR platform and tested with a
real ADS vehicle. Finally, the performance index value is calculated
based on the testing results. The final output of the testing framework is
an estimated index value for a given ODD, e.g., the accident rate in cut-
in scenarios.

2.1. Scenario description

The goal of the scenario description is to determine the decision
variables of the scenario considering ODD. In this paper, the terms
scene, scenario, and ODD defined in (Preparing for the Future of
Transportation, 2018; Ulbrich et al., 2015) are adopted. A scene de-
scribes a snapshot of the environment, including both static (i.e., all
geo-spatially stationary elements) and dynamic elements (i.e., moving
or have the ability to move). A scenario describes the temporal devel-
opment of a sequence of scenes. An ODD is defined by where (such as
what roadway types and speeds) and when (under what conditions,
such as day/night, weather limits, etc.) an ADS is designed to operate.
The ODD essentially provides static parameters and a feasible set of
dynamic parameters. Let and x denote static parameters (e.g., road
environment) and dynamic parameters (e.g., background vehicle
maneuvers) respectively. Note in our problem formulation, is given
and x is the decision variables. Then a specific scenario in a given ODD
can be represented as x x( , ), X, where X is the set of all feasible
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scenarios. Our goal is to find a subset of the feasible set, i.e., X,
which represents critical scenarios (i.e., the library). Taking the sim-
plified cut-in scenario (Zhao et al., 2016) as an example, the decision
variables can be considered as

=x R R( , ), (1)

where R and R denote the relative distance (range) and the relative
speed (range rate) between the cut-in vehicle and the subject vehicle
(SV) at the cut-in moment. The static parameters include roadway
types, weather, the initial speed of the cut-in BV, among others. The
scenario description is generic for different scenario categories under
different ODDs, including but not limited to, free driving, following,
lane changing, overtaking, leave lane, cut-through, slow traffic, stop
and go, lane violation, wrong-way driver, obstacle avoidance, and pe-
destrian crossing. A systematic way of determining scenario categories
can be found in (Thorn et al., 2018).

2.2. Metric design

To quantitatively measure a metric, a performance index needs to
be designed. For safety measures, the performance index is usually
defined as the accident rate on public roads, as in many existing studies.
Let A denote the accident event when ADS is driving on public roads,
then the accident rate is denoted as A( | ). The on-road test approach is
essentially an estimation of P A( | ) in the naturalistic driving environ-
ments. In the cut-in case, if an ADS experiences n cut-in scenarios on
public roads, and has m accident events, then the accident rate is es-
timated as

P A m
n

( ) . (2)

Besides the accident rate, the method is also applicable for accident
surrogates, such as conflict and injury. As long as the safety surrogate
can be defined as an event A, the rate of the safety surrogate can be
calculated by P A( | ). The focus of the proposed framework is to esti-
mate the performance index accurately and efficiently.

2.3. Library generation

Library generation is the most critical step in the framework. The
goal is to find a subset of scenarios in the whole scenario space X (i.e.,

X ) which are critical, to construct the library. First, a new definition
of criticality, i.e., V x( ), is adopted from (Feng et al., 2020a) as the
combination of maneuver challenge and exposure frequency. For safety
assessment, the maneuver challenge measures the dangerous level of a
scenario, while the exposure frequency denotes the probability of the
scenario occurring on public roads. An SM is constructed to estimate the
maneuver challenge of each scenario. Different models can serve as
SMs, such as human driving models (Feng et al., 2020a, 2020b) and
high-level ADS path planning models. The new definition is funda-
mentally different from most existing studies, which usually overvalue
infrequent scenarios (Ma and Peng, 1999; Zhao et al., 2016, 2018).
Based on the criticality definition, different searching methods can be
designed to find the set of critical scenarios with criticality values above
a threshold. In our case study, an optimization-based searching method
is applied. Finally, the library is constructed which consists of the cri-
tical scenarios and their associated criticality values, i.e., V x x( ), .
More details on the library generation will be provided in the next
section.

2.4. ADS evaluation

With the generated library, real ADS can be tested and evaluated
using the AR platform as shown in Fig. 2. The AR platform generates
background traffic in microscopic simulation to augment the func-
tionality of the physical test track. Movements of test ADS in the real
world are synchronized within simulation, and information of simu-
lated background traffic is fed back to the test ADS through a real-time
wireless communication network. The real test ADS can interact with
simulated background traffic as if in a realistic traffic environment. As a
result, testing scenarios that require interactions with other vehicles can
be executed. Comparing with involving real BVs, simulated BVs can be
easily controlled and manipulated in generating different scenarios
with less cost and safety concerns.

To build the AR platform, a microscopic traffic simulator is needed
to construct the simulation world. VISSIM (PTV, 2013) is chosen due to

Fig. 1. The proposed framework for the safety assessment of highly ADS.
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its flexibility in traffic network construction and various user APIs (e.g.,
DriverModel.dll and COM interface) for customized vehicle generation
and control. Wireless communications between the simulation world
and the real world are established by the roadside units (RSU) installed
in the test track via Dedicated Short-Range Communications (DSRC).
Vehicle information is encoded to SAE J2735 complied Basic Safety
Messages (BSMs) which contain vehicle statuses such as location, speed,
acceleration, and heading. Traffic signal information is encoded to SAE
J2735 complied Signal Phasing and Timing (SPaT) messages and also
broadcast from RSUs via DSRC. Traffic signals in the two worlds are
synchronized so that different vehicles can respond to the same signal
indication. A data collection and management system is built to manage
testing data and evaluate the performance of the ADS. More details of
the AR platform can be found in (Feng et al., 2018).

Three steps are included to test the ADS in the AR platform, as
scenario sampling, scenario execution, and performance index estima-
tion. First, a series of specific scenarios are sampled from the scenario
library. The -greedy sampling policy is applied to balance exploitation
and exploration of the generated library as

=q x

V x
W

x

N X N
x

( )
(1 ) ( ) ,

( ) ( )
,

,

(3)

where N X( ) denotes the total number of feasible scenarios, and W is a
normalization factor as

= V xW ( ).
x (4)

After the testing scenarios are sampled, they are imported into the
AR platform. A real ADS is tested with simulated vehicles whose tra-
jectories are specified as the sampled scenarios, and the accident events
are recorded. Finally, the performance index can be estimated as

=

=

=

P A P A x P x

P A x P x
q x

q x

n
P A x P x

q x
x q x

( ) ( , ) ( ),

( , ) ( )
( )

( ),

1 ( , ) ( )
( )

, ( ),

x X

x X

i

n
i i

i
i

1 (5)

where n denotes the total number of tests, x q x( )i denotes that testing
scenarios are sampled according to the distribution q x( ) (see Eq. (3)),
and P A x( , )i denotes the performance of the ADS in the specific

scenario x( , )i , which can be obtained by the testing results (e.g., crash
or not). The last equivalence is derived by the Monte Carlo method with
importance sampling. More details of the theoretical analysis of Eq. (5)
can be found in (Feng et al., 2020a).

The framework provides an important insight that the -greedy
sampling policy and criticality values of the testing scenarios essentially
construct an importance function, i.e., q x( ). We proved in (Feng et al.,
2020a) that the estimation of P A( ) is unbiased which indicates that
the proposed method is accurate. To determine the total number of
required tests (i.e., efficiency), it is critical to analyze the variance of
the importance function. According to Monte Carlo theory (Owen,
2013), the estimation variance of Eq. (5) can be expressed as

=Var n/2 , where

= P A x P x
q x

P A( ( , ) ( | ))
( )

( ) .
x X

2
2

2

(6)

The estimation accuracy can be measured by relative half-width
given a confidence level (Ross, 2017). With the confidence level at
100(1 )%, the relative half-width is defined as

= =l
P A

Var
P A n

(1 /2)
( )

(1 /2)
( )

,r
1 1

(7)

where 1 denotes the inverse cumulative distribution function of
standard normal distributionN (0,1). Then, for a required half-width ,
i.e., lr , the required number of tests is derived as

( )
n

P A

1

( )
.

1
2

2

2

(8)

As the right term is determined by 2, Eq. (8) indicates that the
required number of tests is fewer if the generated library has a smaller

2. We showed in (Feng et al., 2020a) that, by choosing a proper ex-
ploration rate in the sampling policy, the estimation variance can be
minimized. In other words, the estimation efficiency is improved.

Note that the proposed framework is generic for assessing any types
of ADS performances in test tracks. We will introduce a specific TSLG
method applying optimization methods in the following section.

3. Testing scenario library generation

Most existing studies focus on the textual or graphic description of
scenario categories (Thorn et al., 2018; Li et al., 2016, 2019). However,
even for one scenario category, e.g., cut-in on a two-lane highway of

Fig. 2. The Augmented Reality Testing Platform.
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45mph speed limit during day time with the good weather condition,
there could be millions of specific scenarios with different cut-in
parameters. As discussed in the previous section, a specific scenario is
denoted as x x( , ), X, and the key to the problem is to find a set of
critical scenarios, i.e., X. Fig. 3 illustrates the two steps to find the
library. In step 1, the criticality values of all scenarios are calculated,
while in step 2, a searching method is designed to identify the set of
critical scenarios. The two steps are generic to different library gen-
eration methods. In this paper, we introduce a new optimization-based
searching method as follows.

The criticality is defined as the combination of maneuver challenge
and exposure frequency as in (Feng et al., 2020a):

V x P S x P x( ) ( , ) ( ), (9)

where S denotes the accident event with a surrogate model (SM) of
ADS. The SM is designed to represent generic features of different ADS,
e.g., keep a safe distance and interact with surrounding vehicles. It is
similar to human drivers, where different drivers have different driving
habits, but generic features exist among all drivers. An ideal SM should
be calibrated from actual ADS driving data. Due to very limited publicly
available real-world ADS driving data, calibrated human driving
models were used as the SM in (Feng et al., 2020a, 2020b), which is a
natural baseline of ADS, as discussed in (Bojarski et al., 2016; Zhang
and Cho, 2016; Li et al., 2018). As pointed out in (Feng et al., 2020c),
however, the dissimilarity between the SM and ADS usually exists and
reduces the evaluation efficiency. If a high-level ADS planning model,
which can better capture the features of the real ADS vehicle under test
(i.e., smaller dissimilarity), is available, then it should be used as the
SM. In our case study, such a model is obtained from the ADS vehicle
developers and applied as the SM.

The term P S x( , ) measures the probability the SM encounters the
accident event in a specific scenario x( , ), named as maneuver chal-
lenge, which can be obtained by simulation of the SM. The term P x( )
measures the probability of the scenario occurring on public roads,
named as exposure frequency, which can be obtained by analyzing
naturalistic driving data (NDD). The definition is consistent with our
intuition that both dangerous and frequent scenarios are more critical
for safety assessment. If a scenario never happens in the real world, it is
not necessary to be evaluated. On the other hand, if a scenario cannot
challenge the ADS, it is also not critical.

Based on the criticality definition, an optimization-based method is
designed to search for critical scenarios. The basic idea is to conduct a
local search to efficiently find a portion of critical scenarios (i.e., local
optimal solutions), and then expand from these scenarios to construct
the library by the seed-fill method (Nosal, 2008), as shown in Fig. 4. To
provide searching directions, an auxiliary objective function is con-
structed by a combination of the surrogate safety measure and surro-
gate exposure measure. In the literature, different surrogate safety
measures are applied, such as time-to-collision (TTC), the criticality
metric from PEGASUS (Junietz et al., 2018), and Responsibility-Sensi-
tive Safety (RSS) (Shalev-Shwartz et al., 2017). In our study, the
minimal normalized positive enhanced time-to-collision (nmpETTC) is
applied as the surrogate measure for maneuver challenge. To estimate

the exposure frequency, surrogate exposure measure is designed as the
distance between the scenario and a high exposure zone in NDD. Note
that the optimization-based method is not unique. The brute force
method can also work for very simple cases. For high-dimensional
scenarios, a reinforcement learning-based searching method can be
more effective (Feng et al., 2020b).

It is worth noting that the scenarios outside the library still have a
small probability of being sampled and tested with the -greedy sam-
pling policy (see Eq. (3)), because the generated library may not cover
all critical scenarios. However, scenarios in the library have much
higher probabilities of being sampled, according to their criticality
values. This is a typical strategy to balance exploration and exploita-
tion.

The theoretical foundation of the proposed TSLG method is the
important sampling theory (Owen, 2013), which was first introduced
into the field of ADS assessment in (Zhao et al., 2016). The proposed
framework applies this theory and finds that generating a library is
equivalent to constructing an importance function. Therefore, finding
an optimal library is equivalent to constructing an optimal importance
function. Unfortunately, the optimal importance function is impossible
to obtain unless the exact ADS model is known. That is the reason why
the SM is applied as an alternative.

4. Implementation at Mcity

The proposed framework is implemented at the Mcity test track at
the University of Michigan (Anon, 2020), and a Level 4 Lincoln MKZ
hybrid automated vehicle (Xu et al., 2018; Xu and Peng, 2019) is used
as the ADS under test. The Mcity test track is the world’s first purpose-
built full-fidelity proving ground for assessing the performance of
highly ADS (Anon, 2020). It occupies 32 acres and includes about five
lane miles of roadways including a highway segment, arterial roads,
intersections, and traffic signals. The MKZ is equipped with various
sensors, by-wire control, and a communication system, and a self-
driving system has been deployed on the vehicle. Fig. 5 illustrates the
implementation framework, including the TSLG platform, the AR
testing platform, the Mcity test facility, and the ADS under test. To build
the AR testing platform for Mcity, the Mcity’s road network and in-
frastructure components (e.g., traffic signals) are built and calibrated in
VISSIM, using a high-fidelity survey map. The TSLG platform is re-
sponsible for generating scenario libraries under different ODDs based
on NDD and SM. After testing scenarios are sampled from the library,
the AR testing platform generates virtual BVs to replicate the scenarios
in VISSIM and feeds the simulated vehicle information to the real test
ADS in real-time through the RSUs installed in Mcity. Note that the
main purpose of this study is to evaluate the safety performance of the
ADS accurately so that a real ADS vehicle is used to avoid difficulties in
modeling exact vehicle dynamics and road environment in simulation.
The BVs are mainly used to create the testing scenarios so that the ADS
vehicle can respond accordingly. As a result, using simulated vehicles as
BVs will not affect the testing results. There are two additional ad-
vantages of using this mixed reality setting: 1) simulated BVs are easy to
manipulate to exactly replicate the testing scenario, while real BVs are

Fig. 3. Conceptual illustration of the two steps for library generation given an ODD.
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much more difficult to control and coordinate. 2) Crashes are inevitable
during testing, especially under critical scenarios, which may damage
the ADS vehicle if real BVs are used. With simulated BVs, even a crash
happens, no real damage will occur.

The data management module is used to record and process the
testing data. The testing process stops when required relative half-width
(Eq. 8) is reached.

5. Case study

To validate the proposed framework, the cut-in scenario is eval-
uated. NDD from the Safety Pilot Model Deployment (SPMD) project
(Sayer et al., 2011) is utilized to measure the exposure frequency. The
ADS under test is the Lincoln MKZ, introduced in the previous section.
The Lincoln vehicle uses the Gipps car-following model (Gipps, 1981)
as its high-level planning model. As a result, the Gipps model is applied
as the SM, as discussed in Section 3. The objective is to evaluate the

Fig. 4. Illustration of the entire library generation process.

Fig. 5. Implementation of the proposed framework at Mcity test track.
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safety performance in terms of accident rate of the Lincoln vehicle in
cut-in scenarios. An accident is identified if the relative distance be-
tween the BV and the ADS is zero or less than zero (i.e., overlapped). In
reality, the cut-in vehicle may choose different lateral speeds to perform
cut-in and adjust its speed after cut-in, which introduces more para-
meters (dimensions). To better illustrate and visualize the case study,
we simplify the case and consider only two dimensions, i.e., range and
range rate at the cut-in moment, as illustrated in Eq. (1). The cut-in
vehicle will maintain a constant speed after the cut-in maneuver. This is
also a common practice in many other studies (e.g., Zhao et al., 2016).
As illustrated in Fig. 6, the Lincoln MKZ starts from the scenario starting
point at the south of the highway segment at Mcity, adjusts its speed to
the expected value, and reaches the “cut-in” region where the simulated
BV performs a cut-in with the pre-determined range and range rate.
Different values of the range and range rate are sampled from the
generated library. By analyzing the trajectories of the two vehicles, the
accident event can be identified.

In the following, we will go through all the major steps of the as-
sessment framework using the cut-in scenario as an example.

5.1. Naturalistic driving data analysis

The SPMD database is one of the largest NDD databases that record
naturalistic driving behaviors over 34.9 million miles from 2842
equipped vehicles in Ann Arbor, Michigan. In the database, there are 98
sedans equipped with the data acquisition system and Mobileye cam-
eras, which enable measuring and recording the position and speed
data between the host vehicle and preceding vehicles at a frequency of
10 Hz. The following query criteria are designed to extract all cut-in
events: (a) the vehicles’ speeds at the cut-in moment belong to (2m/s,
40m/s); (b) the range at the cut-in moment belongs to (0.1m, 90m). A

total number of 414,770 qualified cut-in events are successfully ob-
tained. Without loss of generalization, the range and range rate are
discretized by 2m and 0.4m/s respectively. Fig. 7(a) shows the ex-
posure frequency of the cut-in scenarios.

5.2. Surrogate model construction

The key idea of constructing the SM is to include prior knowledge of
the ADS under test to measure the maneuver challenge. For the ADS
vehicle in the experiment (i.e., Lincoln MKZ), the Gipps model (Gipps,
1981) is adopted as the high-level car-following planning model. Al-
though the exact behaviors of the Lincoln vehicle are much more
complicated and intractable for prediction, the Gipps car-following
model is a natural choice of the SM. The values of parameters and
constraints are also obtained from the vehicle developers (Xu et al.,
2018; Xu and Peng, 2019). Specifically, the SM is described as

+ = + +

+

v t v t a v t
V

v t
V

b

b b x t s x t v t v t b

( ) min ( ) 2.5 1 ( ) 0.025 ( ) ,

[2[ ( ) ( )] ( ) ( )/ ]

m m m
m

m

m

m
m

m m m m m m m

1
2

2 2 1 1 1
2

(10)

where x v, denote the position and speed, t denotes the current time,
denotes the time interval, m denotes the following vehicle, m 1 de-
notes the leading vehicle, and a V b s b, , , ,m m m m 1 are static parameters.
The values of the static parameters can be found in Table 1. The con-
straints of acceleration and speed of the model are included as

a u amin n max

v v vmin n max

Fig. 7(b) shows the maneuver challenge from the SM simulation in
all cut-in scenarios. The yellow region denotes the SM has accident
events in these scenarios, i.e., =P S x( , ) 1. The blue region denotes
that the SM has no accident event in these scenarios, i.e., =P S x( , ) 0.
Note that the SM, in this case, is deterministic. It is a reasonable setting
because, for most ADS, safety-related behaviors are desired to be stable.

5.3. Library generation

As shown in Eq. (9), the criticality of scenarios can be measured
based on the exposure frequency and maneuver challenge. Fig. 7(c)
shows the normalized criticality values of all cut-in scenarios. The
lighter colors denote the higher criticality values. The set of scenarios
with criticality values greater than a threshold (i.e., 0) are included in
the library. To obtain the subset, the optimization-based searching
method described in Fig. 4 is applied. In this case, 57 critical scenarios
are obtained, which is about 1.67 % of all feasible scenarios. With the
generated library, -greedy sampling policy in Eq. (3) is applied to
sample testing scenarios. The value of is selected as 0.1.

5.4. ADS evaluation

Based on the sampled testing scenarios, the Lincoln vehicle is tested
and evaluated in the AR platform at Mcity. In one test, a BV is generated
by the simulation and performs the cut-in maneuver in front of the
Lincoln vehicle with sampled range and range rate. Detail trajectories of
the Lincoln MKZ and the cut-in vehicle are recorded with the onboard
data acquisition system at the frequency of 20 Hz. A screenshot of the
field test video is shown in Fig. 8, including the augmented view of the
Lincoln vehicle (white and black: Lincoln; red: cut-in vehicle), view of
the vehicle’s front camera, scenario parameters (range, and speeds),
and the simulation view (yellow: Lincoln; red: cut-in vehicle). After all
the tests are done, the accident rate of the Lincoln MKZ is calculated by
Eq. (5), and the relative half-width is calculated by Eq. (7). To provide

Fig. 6. Bird’s-eye view of the cut-in test scenario at Mcity.
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ground truth of the accident rate and a baseline for efficiency com-
parison, the on-road test approach is simulated, where testing scenarios
are sampled from the exposure frequency in Fig. 7(a) obtained from
NDD. The method is denoted as the NDD evaluation.

Fig. 9 shows the evaluation results comparing the proposed method
and NDD evaluation. The bottom x -axis denotes the number of tests
from NDD evaluation, while the top x-axis denotes the number of tests
from the proposed method. Fig. 9(a) shows the proposed method can
obtain the same accident rate as the NDD evaluation, i.e., accuracy.

Note that the maximum deceleration of the ADS under test is set to a
moderate value (about m s2 / 2) and the emergency brake function is
disabled for experimental convenience, e.g., safety driver’s comfort.
Therefore, the accident rate of the ADS is about ×2 10 5, which is
higher than normal human drivers. The main purpose of the field test is
to validate the proposed safety assessment framework, not estimating a
true cut-in accident rate. Fig. 9(b) shows the proposed method can
obtain the same precision level by a much smaller number of tests. In
this case, for the relative half-width = 0.2, the required number of
tests for the proposed method and NDD evaluation are 31 and ×3 106

respectively. The results of NDD evaluation are consistent with (Kalra
and Paddock, 2016), where the ADS would have to drive hundreds of
millions of miles to validate safety. The proposed method significantly
reduces the number of tests and accelerates the safety assessment pro-
cess by ×9.87 104 times. If one cut-in scenario occurs every certain
number of miles on the public road, we can claim that one testing mile
of the critical scenarios is equivalent to ×9.87 104 miles of the public
road test. The improved efficiency can significantly reduce both the
time and cost of the ADS validation and verification (V&V) process.

6. Conclusions

In this paper, a new framework is proposed integrating the AR

Fig. 7. Results of the TSLG method.

Table 1
Values of the parameters in the case study.

Parameter Value

am m s2 / 2

Vm m s12 /
bm m s2.5 / 2

sm 1 m10
b m s2.5 / 2

amin m s2 / 2

amax m s2 / 2

vmin m s0 /
vmax m s40 /

s0.25
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testing platform and the TSLG method for the safety assessment of
highly ADS in test tracks. The AR testing platform, which combines the
virtual and real worlds, provides a cost-effective method to generate
background traffic in closed test tracks. The TSLG method, which
identifies critical scenarios and constructs a scenario library, accelerates
the evaluation process without losing accuracy. The framework is

implemented and tested at the Mcity test track with a Level 4 ADS
vehicle. Field test results show that the proposed framework can assess
the safety of highly ADS accurately and efficiently. The safety assess-
ment process of the cut-in scenario is accelerated by ×9.87 104 times
comparing with the NDD evaluation.

In the future study, a sensor simulation component will be added to

Fig. 8. A Screenshot of the field test video. (https://traffic.engin.umich.edu/research/automated-vehicle-system-testing-and-evaluation).

Fig. 9. Results of the accident rate estimation (a) and relative half-width (b) with the increasing number of tests.
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the AR testing platform to test the perception module of the ADS.
Moreover, a more complete list of scenario categories is required, so the
library under different ODDs can be generated for comprehensive safety
assessment. To validate the framework for high-dimensional scenarios,
the highway driving scenarios will be studied, where both lateral and
longitudinal maneuvers of the ADS are modeled, and multiple back-
ground vehicles may interact with the ADS. Furthermore, the generated
safety-critical scenarios can be utilized to train the CAV models pur-
posely. By training better prediction models or planning strategies (e.g.,
evasive maneuvers), the safety performance of the CAV can be further
improved.
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