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Abstract: Many recent applications of intelligent transportation systems require both real-time and network-wide traffic flow data
as input. However, as the detection time and network size increase, the data volume may become very large in terms of both
dimension and scale. To address this concern, various traffic flow data compression methods have been proposed, which
archive the low-dimensional subspace rather than the original data. Many studies have shown the traffic flow data consist of
different components, i.e. low-dimensional intra-day trend, Gaussian type fluctuation and burst components. Existing
compression methods cannot compress the burst components well and provide very limited choices of compression ratio (CR).
A better compression method should have the ability to archive all the dominant information in different components of traffic
flow data. In this study, the authors compare the influence of different data reformatting, archive the bursts defined before in
descending order with respect to the absolute value of the burst points and propose a flexible compression framework to
balance between burst components and low-dimensional intra-day trend. Experimental results show that the proposed
framework promotes the reconstruction accuracy significantly. Moreover, the proposed framework provides more flexible
choices with respect to CR, which can benefit a variety of applications.

1 Introduction
Intelligent transportation systems have been playing a great role in
different practical and research tasks such as traffic control
strategy, remote sensing, route guidance and traffic prediction [1–
6]. Recently, more sophisticated applications in these fields have
become available with the emergence and availability of the large
amount of traffic flow data, many of which are in real time and
network wide [2, 4]. Large roadway networks are typically
composed of thousands of road segments, and traffic flow data of
each segment are normally recorded as one data dimension in the
dataset. For data acquisition systems that have temporal resolution
of 30 s [5], approximately one million data points are generated by
a single sensor annually. That is to say, traffic flow data is
becoming both high dimensional and large scale, which may easily
cause the curse of dimensionality for many data-driven
applications and put strain on resources of data management
systems [7, 8]. Traffic flow data compression, as one of the most
effective solutions, has been proposed to address these kinds of
problems [9].

Many studies have shown that there is an inherent low-
dimensional subspace underlying the high-dimensional raw data,
which is able to interpret most information of the original traffic
flow data matrix [7, 9]. The fundamental idea of data compression
is to archive the low-dimensional subspace by the similarity of the
data rather than the original data, based on which the
reconstruction can be conducted. There have been many methods
to archive the low-dimensional subspace of the traffic flow data
such as traffic data compression methods based on artificial neural
network [10], wavelet transform [11], principal component analysis
(PCA) [7], Kronecker product (KP) [12] and tensor [13, 14]. Note
that the principal theory of traffic flow data compression methods
is different from that of traditional compression methods such as
those based on Morse coding [15], Shannon theorem [16] and
Huffman coding [17]. As Fig. 1 shows, a data compression
procedure can be divided into two stages, the first of which is
based on the redundancy in the raw data and get the low-
dimensional data, the second of which is based on the redundancy

in the coding of the files [18, 19] and get the computer code. In this
paper, we focus on the first stage compression based on the instinct
structure of traffic flow time series data. 

However, as shown in [20–22], the traffic flow data are
heterogeneous and consist of different components, namely the
low-dimensional intra-day trend, Gaussian type fluctuation and
burst components. The existing compression methods cannot
compress the burst components well and the reconstruction error in
such data points is significantly large. Furthermore, the methods
can only provide limited choices of compression ratio (CR) which
can hardly meet the practical requirements. Therefore, it is
reasonable to come up with the hypothesis that the superior
compression method should archive all the dominant information
of all the three components of traffic flow data, rather than just the
low-dimensional subspace. In this paper, we proposed a flexible
compression framework to implement the compression with burst
components considered. To make the research concise and focus on
the key contributions, we mainly discuss the burst components
compression in this paper. More detailed information about
fluctuation analysis can be found in [23, 24].

Experimental results show the proposed compression
framework promotes the reconstruction accuracy significantly and
provides more flexible choices of CR. Further studies show that
though burst components or outliers are the interferences to the
data analysis in many research areas, burst components of traffic
flow data contain crucial information of non-recurrent traffic
breakdowns caused by traffic accidents, adverse weather or big
events.

To implement the proposed framework, three essential
problems need to be addressed. The first problem is how to
reformat the raw data, so that they are able to be used by the
algorithm; also, properly reformatting the data is important to the
fairness of comparison of different algorithms. The second problem
is how to archive the principal information of burst components,
and the third one is how to balance between burst components and
low-dimensional intra-day trend. Fig. 2 shows the four steps to
implement the framework and their corresponding effects. In the
second step of the framework, the matrix decomposition methods
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to archive the low-dimensional intra-day trend have been well-
developed in previous studies. In our paper, three most widely used
matrix decomposition methods which are based on PCA [7], KP
[12] and tensor [13, 14] are adopted. The overall processing
pipeline is actually developed based on addressing the
aforementioned three problems in an effective manner. For the first
problem, we compare the influence of different ways of matrix
mapping for different amounts of traffic networks. For the second
problem, we employ a simple yet effective policy: archiving the
bursts defined before in descending order with respect to the
absolute value of the burst points. The sparse matrix of the burst
points can be reconstructed by a series of 2-tuple, which are
composed by a numerical value term and a location term obtained
by lexicographical recording of the sparse matrix. For the last one,
we propose a flexible compression framework to balance between
burst components and low-dimensional intra-day trend. 

The rest of this paper is organised as follows. Section 2 explains
the data sources and performance indexes. Section 3 explains why
and how to implement the proposed flexible compression
framework. The experimental test and discussion are presented in
Section 4. Finally, the conclusions are summarised in Section 5.

2 Data sources and performance indexes
In this paper, we select the flow data of traffic networks from the
publicly accessible performance measurement system dataset [5].
The sampling interval in this work is 5 min. The traffic networks
are all within the state of CA in the USA, and the traffic flow data
have a time range from 1st August 2011 to 21st August 2011. To

compare the influence of the sizes of traffic networks, we consider
three test networks at small, middle and large size. The small test
network has ten traffic flow detectors (Category A (CATA)), the
middle one has 100 detectors (Category B (CATB)) and the large
one has 1000 detectors (Category C (CATC)). The data volumes of
the test datasets are 60,480 (CATA), 604,800 (CATB) and
6,048,000 (CATC), respectively, in the unit of bytes.

Suppose that we have m detectors and each detector records n
consecutive points of traffic flow data, we could get the raw data
matrix X ∈ Rm × n as

X = [X(1), X(2), …, X(m)]T, (1)

where X(i) = [xi(1), Xi(2), …, Xi(n)]T represents the data collected
by the i detector. According to our paper, it is simple enough to
present the data in matrix. For example, when we want the value of
the i point in j day of k detector, v(i, j, k), we have

v(i, j, k) = X(k, 288 ∗ ( j − 1) + i), (2)

where 288 is the total number of points in 1 day. Therefore, we can
just present the data in matrix.

The most crucial objectives for a compression method is to (i)
reach as high reconstruction accuracy as possible and (ii) use as
little storage space as possible. Therefore, two indexes are
normally adopted to evaluate the performance of a compression
method.

One is the CR to measure the amount of storage space as

Fig. 1  Comparison between two different compression stages
 

Fig. 2  Flowchart of the proposed compression framework
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CR = bytes of compressed data
bytes of raw traffic data . (3)

Another index is the relative absolute deviation (RAD) to measure
the reconstruction accuracy as

RAD(X, X
~) = 1

∥ X ∥ ∑
i = 1

m

∑
j = 1

n
x~i( j) − x~i( j) , (4)

where ∥ X ∥ = ∑i = 1
m ∑ j = 1

n x~i( j)  and X
~ ∈ Rm × n.

3 Flexible compression framework
3.1 Data reformatting

To make the raw data suitable for the algorithm, a data reformatting
operator R( ⋅ ) is considered to map X ∈ Rm × n into matrices or
tensors. To preserve the instinct similarity of traffic flow data, we
should choose a data reformatting operator that has practical
meaning such as hours, days and weeks. Taking Fig. 3 as an
example, we format the data collected by one detector in 1 day as a
row of data matrix and data collected by one detector as a slide for
data tensor. 

3.2 Matrix decomposition methods

In this paper, we consider three matrix decomposition methods to
archive the low-dimensional intra-day trend based on PCA [7], KP
[12] and tensor [13, 14]. To help clarify the relationship between
the matrix decomposition methods and data compression, we

introduce the methods as the constrained optimisation problems,
given by (4)–(6)

min
Y

∥ RPCA(X) − Y ∥ s . t . Y = U ⋅ V = ∑
i = 1

r
ui ⋅ vi

T, (5)

min
Y

∥ RKP(X) − Y ∥ s . t . Y = ∑
i = 1

r
Ui ⊗ Vi, (6)

min
Y

∥ Rtensor(X) − Y ∥ s . t . Y = ∑
i = 1

r
λiui

1 ∘ ui
2, …, ∘ ui

N, (7)

where ∥ ⋅ ∥ is a norm defined specifically by different methods
and Y is the aimed matrix (tensor). Here, ⋅ denotes for matrix
product, ⊗ denotes KP and ∘ denotes tensor product. ui is the ith
column vector of U and so is vi. λi is a scalar.
ui

s = (ui, 1
s , ui, 2

s , …, ui, I
s )T. I are the orders of the tensor. Note that we

use the canonical polyadic decomposition here [13, 14].
Fig. 4 shows an illustration of matrix decomposition methods.

As shown in (4)–(6), the matrix decomposition methods resolve the
raw data matrix into summation of the matrix product of the
compressed matrices. To store the appropriate groups of
compressed matrices to archive the low-dimensional intra-day
trend rather than the original data, we could reach the goal of
compression. The remaining groups of compressed matrices are
defined as the residual (see Fig. 4a). 

Fig. 3  Illustration of the data reformatting process
 

Fig. 4  Illustration to help clarify the relationship between the matrix decomposition methods and data compression
(a) PCA-based, (b) KP-based, (c) Tensor-based
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3.3 Burst components compression

Fig. 5 is an illustration of the three heterogeneous components of
traffic flow data. The red line denotes the intra-day trend which is
archived by the matrix decomposition method based on PCA. The
black line is the residual which cannot be reconstructed by the
intra-day trend. The definition of residual can also see Fig. 4a.
Suppose the standard deviation is obtained from the square root of
the variance for the entire residual time series, and then we can
define a point as burst point if its deviation is larger than twice the
standard deviation as defined in [20–22], which are denoted by the
red points. The sensitivity analysis of the threshold will be given in
Section 4.4. Five burst points with large variances in Fig. 5 are
selected. It is found that these burst components cannot be
retrieved by matrix decomposition methods and the reconstruction
errors in such points are very large. 

The problem here is how to archive the principal information of
the burst components. In this paper, we employ a simple yet
effective policy: archiving the bursts defined before in descending
order with respect to the absolute value of the burst points. The
sparse matrix of the bursts can be reconstructed by a series of 2-
tuples, which are composed by a numerical value term and a

location term obtained by lexicographical recording of the sparse
matrix.

3.4 Flexible compression framework

We have already archived the low-dimensional subspace of traffic
flow data by matrix decomposition methods as well as the burst
components by a simple yet effective policy. The remaining
problem is how to balance between the burst components and the
low-dimensional intra-day trend. To this end, we propose a flexible
compression framework. The fundamental idea of the framework is
to compare the storage cost and reconstruction accuracy decrease
and select a better combination of the burst components and the
low-dimensional intra-day trend. The algorithm details of the
framework are presented in Table 1. 

4 Numerical test and discussion
4.1 Influence of data reformatting

Data reformatting enables the raw data to be used by the algorithm.
Different methods of reformatting will affect the performance of

Fig. 5  Illustration of the heterogeneous components of traffic flow data by matrix decomposition methods. We take the method based on PCA, for example,
which results are similar to methods based on tensor and KP. The original data is gathered by detector (ID 311974) on 2 October 2015. The intra-day trend is
calculated based on traffic flow data of five consecutive since 2 October 2015

 
Table 1 Algorithm of the flexible compression framework

in: raw data matrix X, the required CR
out: a combination of the compressed matrices and burst points to store

1. data rearrangement: X~ = R(X)
2. matrix decomposition: Resolve X~ into summation of matrix product of the compressed matrices, shown as in (4)–(6)

3. set i = 1, k = 1
4. Repeat

• store the ith group of compressed matrices and update the residual (Fig. 4)
• get the current burst components from the residual

• sort the current burst points following the sequence that descends the absolute value of burst points:
• set j = 1.

• repeat
store the jth burst points as a 2-tuple composed by a numerical value term and a location term obtained by lexicographical recording of the

sparse matrix

CCR(k) = bytes of a group of compressed matrices × i + j × 2
bytes of raw traffic data

set j = j + 1, k = k + 1
• until all the current burst components are stored

• compute CR(i) = bytes of a group of compressed matrices × i
bytes of raw traffic data

• set i = i + 1
5. until CR(i) > CR or all the compressed matrices are stored

6. search the best combination: search the best reconstruction accuracy combination whose CCR is equal to CR within a tolerance range
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compression methods. For the fairness of the succeeding
experiments, the influence of data reformatting should be studied.

In this section, we discuss the influence of data reformatting on
compression methods and take the method based on PCA, for
example, which is similar to methods based on tensor and KP. We
select data collected by one detector through all the periods (shown
as ‘one detector’), one detector through 1 week (shown as ‘1 week,
one detector’) and one detector through 1 day (shown as ‘1 day,
one detector’) as a row of data matrix. The results are plotted in
Fig. 6. The test network is (a) CATA, (b) CATB and (c) CATC. 

It can be observed that there is no constant optimal selection of
data reformatting for all different sizes of traffic networks. In
essence, each type of data reformatting preserves some type of
similarity but yields discrepancy simultaneously and it is the
balance that really matters. Take the reformatting shown by the red
line in Fig. 6, for example. The matrix decomposition methods
could utilise the similarity but yield the discrepancy among
different detectors and days. When the network is small where the
similarity plays a dominant role such as in Figs. 6a and b, the data
reformatting contributes to archive the low-dimensional subspace
of traffic flow data. However, when the network is large enough
where the discrepancy becomes the dominant interference such as
in Fig. 6c, the data reformatting does not perform well. For the
fairness of comparison, we will take the local optimum format for
different algorithms at different networks in the experiments.

4.2 Comparison of matrix decomposition methods

In this section, we compare the performance of different matrix
decomposition methods based on PCA, tensor and KP at different
sizes of networks. As shown in Fig. 7, method based on tensor
performs better at small CR, especially when the CR is no larger
than 0.02, which is consistent with the finding in our previous
paper [9]. 

There is an instructive phenomenon that the difference among
matrix decomposition methods is not obvious at large CR,
especially when the size of network gets larger, as shown in
Fig. 7c. More specifically, as the CR becomes larger, the
reconstruction accuracy is not as sensitive to the matrix
decomposition method, especially when the size of network gets
larger. This actually implies that the main low-dimensional intra-
day trend has been archived by the matrix decomposition methods,

so the major errors of data compression are not in low-dimensional
subspace. According to our hypothesis, the major errors come from
the burst components.

4.3 Results of the flexible compression framework

In this section, we analyse the results of the proposed compression
framework. First, we focus on the procedure of the framework and
prove that the new framework can provide more flexible choices
for CR. Then, we compare the compression performance of the
proposed method with the matrix decomposition methods to
confirm the hypothesis we proposed in this paper. Finally, we
discuss the phenomenon of reconstruction error decrease.

Fig. 8 is an illustration of the flexible compression framework
when the required CR is 0.02, where the blue triangles express the
performance of the matrix decomposition method based on PCA
and the red points show the possible combinations of low-
dimensional intra-day trend and burst components. As shown in
this figure, the flexible framework takes three steps to get the
compression solution with the required CR, while the
decomposition method based on PCA can only provide
compression options whose CR is 0.0165 or 0.0247. Therefore, the
proposed flexible compression framework provides more flexible
choices for CR. 

Fig. 9 shows the compression performance of the proposed
method and the matrix decomposition based on PCA. The red
points show the possible combinations of low-dimensional intra-
day trend and burst components. The fundamental idea of the
flexible compression framework is to choose the best
combinations, shown as the black line. Results show that the
proposed compression framework promotes the reconstruction
accuracy significantly for all three test networks, especially when
the CR is larger than 0.1, which confirm the hypothesis we
proposed in this paper: the superior compression method should
archive all the dominant information in the different components of
traffic flow data, not only the low-dimensional subspace. 

Fig. 10 is the reconstruction error decrease by the proposed
framework at CATC. We divide this figure into three zones. In
zone-I, the low-dimensional intra-day trend plays dominant role, so
the reconstruction error decrease caused by the proposed method is
nearly zero. In zone-II, it can be seen that the proposed framework
promotes the compression performance observably, the maximum

Fig. 6  Influence of raw data matrix rearrangement for compression method based on PCA. The test network is
(a) CATA, (b) CATB, (c) CATC
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of which reaches to 23.2%. According to our hypothesis, the burst
components play the dominant role in this zone, which means the
proposed method performs well. In zone-III, the reconstruction
error decrease changes very slowly and maintains at a relatively
certain level. It is supposed that the low-dimensional intra-day
trend and the burst components have been archived by the
proposed compression method and the major errors remain in the
Gaussian type fluctuation. Therefore, future efforts can be put to
study the fluctuation characteristics and archive the dominant
information of the fluctuation to further promote the compression
performance. 

4.4 Sensitivity analysis and the procedure for real situation

In our framework, the main parameter is the threshold to define a
burst point, sensitivity analysis of which is given in this section. As
shown in Fig. 11, we vary the threshold from 0 to 3 σ. Results

show that though the proposed framework with all different
threshold works better than PCA method (threshold is 0), the
threshold affects the performance of the proposed framework
especially when the network is middle or large (see Fig. 11b and c).
Moreover, the threshold with σ has the best performance for all
small, middle and large networks. Therefore, we can take σ as the
threshold to define a burst point. 

Inspired by the intelligent thresholds separator in [25, 26] and
the results of sensitivity analysis, we can define a flexible method
to separate burst points from other points by taking σ as the
threshold to define a burst point in real situation. The procedure of
the proposed compression framework in real situation is explained
below: first, we confirm the CR as the requirement in real situation.
Second, we reformat the raw data according to the results of
Section 4.1 and make matrix decomposition. Third, we calculate
the RAD-CR figure as Fig. 9, in which we take σ as the threshold
to define a burst point and store the burst points by a series of 2-

Fig. 7  Comparison of matrix decomposition methods based on PCA, tensor and KP. The test network is
(a) CATA, (b) CATB, (c) CATC

 

Fig. 8  Illustration of the flexible compression framework when the required CR is 0.02. As shown in this figure, the flexible framework takes three steps to get
the compression solution with the required CR, while the decomposition method based on PCA can only provide compression options whose CR is 0.0165 or
0.0247. Therefore, the proposed flexible compression framework provides more flexible choices for CR
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tuples which are composed by a numerical value term and a
location term obtained by lexicographical recording of the sparse
matrix. Finally, we get the optimal combination to implement the
compression procedure as shown in Table 1.

5 Conclusion
In this paper, we propose a hypothesis that the superior
compression method should archive all the dominant information
in the three different components of traffic flow data. We focus on
the compression considering the burst components in this work.
Results confirm the hypothesis from different perspectives:

(i) For matrix decomposition methods, it is hard to promote the
reconstruction accuracy when the CR gets larger, especially when
the size of network gets larger. That is because the low-

dimensional intra-day trend has been archived by the methods and
the major errors remain in other components such as the burst
components and Gaussian type fluctuation.
(ii) The proposed compression method significantly promotes the
compression performance, the maximum of which reaches to
23.2%, especially when the CR is larger than 0.1. This finding
directly validates our hypothesis.
(iii) Further analysis on the results show that the reconstruction
error decrease changes very slowly and maintains at a relatively
certain level as CR increases. According to our hypothesis that is
because the low-dimensional intra-day trend and the burst
components have been archived by the proposed compression
method and the major errors may remain in the Gaussian type
fluctuation.

Fig. 9  Compression performance of the proposed compression framework and the matrix decomposition based on PCA. The test network is
(a) CATA, (b) CATB, (c) CATC. Results show that the proposed compression framework promotes the reconstruction accuracy apparently for all three test networks, especially when
the CR is larger than 0.1, which confirm the hypothesis we proposed in this paper

 

Fig. 10  Reconstruction error decrease by the proposed method at CATC. The proposed framework promotes the compression performance observably, the
maximum of which reaches to 23.2%. We can divide this figure into three zones as shown in this figure, where the low-dimensional intra-day trend plays
dominant role in zone-I, the burst components play dominant role in zone-II, and zone-III is a new zone where may be the fluctuation play dominant role
according to our hypothesis
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Moreover, to implement the work technically, we compare the
influence of different data reformatting, archive the bursts defined
before in descending order with respect to the absolute value of the
burst points and propose a flexible compression framework to
balance between burst components and low-dimensional intra-day
trend. The findings are as follows:

(i) For the fairness of comparison, we should take the local
optimum format for different algorithms at different networks in
the experiments. That is because there is no constantly best
selection of data reformatting for all different sizes of traffic
networks. In essence, each type of matrix mapping preserves some
type of similarity but yields discrepancy simultaneously and it is
the balance that really matters.
(ii) The policy we employ to archive the principal information of
the bursts in this work is simple yet effective.
(iii) The proposed flexible compression framework in this work
balances between burst components and low-dimensional intra-day
trend well. It promotes the reconstruction accuracy significantly
and provides more flexible choices for CR.

Our future work will focus on the following aspects. First, the
fundamental idea of the hypothesis could be extended into other
applications such as traffic flow prediction and missing data
imputing. Second, the stochastic properties of the burst
components and more effective methods to archive the principal
information of the bursts are worthy of attention and effort. Besides
intra-day trend and burst components, in order to further promote
the compression performance, our team will study the fluctuation
characteristics and archive the dominant information of the
fluctuation.
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